Taiping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3604526/publications.pdf

Version: 2024-02-01

186265 361022 6,061 35 28 35 citations h-index g-index papers 37 37 37 8461 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature Genetics, 2009, 41, 125-129.	21.4	721
2	Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b. Molecular and Cellular Biology, 2003, 23, 5594-5605.	2.3	652
3	DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology, 2006, 8, 416-424.	10.3	538
4	KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature, 2009, 461, 415-418.	27.8	465
5	A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural and Molecular Biology, 2008, 15, 268-279.	8.2	348
6	Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nature Genetics, 2007, 39, 391-396.	21.4	308
7	A Novel Dnmt3a Isoform Produced from an Alternative Promoter Localizes to Euchromatin and Its Expression Correlates with Activede Novo Methylation. Journal of Biological Chemistry, 2002, 277, 38746-38754.	3.4	302
8	Structure and Function of Eukaryotic DNA Methyltransferases. Current Topics in Developmental Biology, 2004, 60, 55-89.	2.2	272
9	The PWWP Domain of Dnmt3a and Dnmt3b Is Required for Directing DNA Methylation to the Major Satellite Repeats at Pericentric Heterochromatin. Molecular and Cellular Biology, 2004, 24, 9048-9058.	2.3	241
10	Inactivation of Dnmt3b in Mouse Embryonic Fibroblasts Results in DNA Hypomethylation, Chromosomal Instability, and Spontaneous Immortalization. Journal of Biological Chemistry, 2005, 280, 17986-17991.	3.4	237
11	DNA Methylation Reprogramming during Mammalian Development. Genes, 2019, 10, 257.	2.4	215
12	Genetic alterations of DNA methylation machinery in human diseases. Epigenomics, 2015, 7, 247-265.	2.1	209
13	Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes and Development, 2015, 29, 2449-2462.	5.9	170
14	A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood, 2013, 122, 4086-4089.	1.4	153
15	Lsh is involved in de novo methylation of DNA. EMBO Journal, 2006, 25, 335-345.	7.8	150
16	DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biology, 2018, 19, 88.	8.8	120
17	DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Research, 2019, 47, 152-167.	14.5	99
18	LSD1 demethylates histone and non-histone proteins. Epigenetics, 2009, 4, 129-132.	2.7	93

#	Article	lF	Citations
19	KMT1E Mediated H3K9 Methylation Is Required for the Maintenance of Embryonic Stem Cells by Repressing Trophectoderm Differentiation. Stem Cells, 2010, 28, 201-212.	3.2	81
20	Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells. Cell Reports, 2017, 20, 1936-1949.	6.4	81
21	Maternal Setdb1 Is Required for Meiotic Progression and Preimplantation Development in Mouse. PLoS Genetics, 2016, 12, e1005970.	3.5	75
22	Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discovery, 2016, 2, 16007.	6.7	74
23	Transcription and chromatin determinants of de novo DNA methylation timing in oocytes. Epigenetics and Chromatin, 2017, 10, 25.	3.9	69
24	Tet family of 5-methylcytosine dioxygenases in mammalian development. Journal of Human Genetics, 2013, 58, 421-427.	2.3	64
25	The Arginine Methyltransferase PRMT6 Regulates DNA Methylation and Contributes to Global DNA Hypomethylation in Cancer. Cell Reports, 2017, 21, 3390-3397.	6.4	60
26	De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nature Communications, 2019, 10, 4541.	12.8	44
27	The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes and Development, 2020, 34, 1546-1558.	5.9	44
28	Genetic Studies on Mammalian DNA Methyltransferases. Advances in Experimental Medicine and Biology, 2016, 945, 123-150.	1.6	38
29	Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Research, 2019, 47, 8388-8398.	14.5	29
30	Identification of Rpl29 as a major substrate of the lysine methyltransferase Set7/9. Journal of Biological Chemistry, 2018, 293, 12770-12780.	3.4	24
31	A Hypomorphic Lsd1 Allele Results in Heart Development Defects in Mice. PLoS ONE, 2013, 8, e60913.	2.5	23
32	The ZBTB24-CDCA7 axis regulates HELLS enrichment at centromeric satellite repeats to facilitate DNA methylation. Protein and Cell, 2020, 11, 214-218.	11.0	21
33	The Essential Function of SETDB1 in Homologous Chromosome Pairing and Synapsis during Meiosis. Cell Reports, 2021, 34, 108575.	6.4	16
34	LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nature Communications, 2019, 10, 5494.	12.8	13
35	Mechanistic and Functional Links Between Histone Methylation and DNA Methylation. Progress in Molecular Biology and Translational Science, 2011, 101, 335-348.	1.7	12