Helena PelantovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3604118/publications.pdf Version: 2024-02-01

ΗΕΙ ΕΝΑ ΡΕΙ ΑΝΤΟΥΔ

#	Article	IF	CITATIONS
1	NMR- and MS-Based Untargeted Metabolomic Study of Stool and Serum Samples from Patients with Anorexia Nervosa. Journal of Proteome Research, 2022, 21, 778-787.	3.7	6
2	Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides. International Journal of Molecular Sciences, 2022, 23, 4106.	4.1	7
3	Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis. International Journal of Molecular Sciences, 2022, 23, 5743.	4.1	2
4	Determination of Butyrate Synthesis Capacity in Gut Microbiota: Quantification of but Gene Abundance by qPCR in Fecal Samples. Biomolecules, 2021, 11, 1303.	4.0	6
5	Exploration of GH94 Sequence Space for Enzyme Discovery Reveals a Novel Glucosylgalactose Phosphorylase Specificity. ChemBioChem, 2021, 22, 3319-3325.	2.6	6
6	Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. International Journal of Molecular Sciences, 2021, 22, 10606.	4.1	15
7	The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes, 2021, 13, 1-25.	9.8	58
8	Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Frontiers in Nutrition, 2021, 8, 783302.	3.7	14
9	High-Affinity <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymers with Tailored <i>N</i> -Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules, 2020, 21, 641-652.	5.4	24
10	A novel enzymatic tool for transferring GalNAc moiety onto challenging acceptors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140319.	2.3	11
11	Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. Journal of Agricultural and Food Chemistry, 2020, 68, 11197-11206.	5.2	12
12	How Siteâ€Directed Mutagenesis Boosted Selectivity of a Promiscuous Enzyme. Advanced Synthesis and Catalysis, 2020, 362, 4138-4150.	4.3	8
13	Lipid Profiling in Epicardial and Subcutaneous Adipose Tissue of Patients with Coronary Artery Disease. Journal of Proteome Research, 2020, 19, 3993-4003.	3.7	7
14	Regioselective 3â€ <i>O</i> ‣ubstitution of Unprotected Thiodigalactosides: Direct Route to Galectin Inhibitors. Chemistry - A European Journal, 2020, 26, 9620-9631.	3.3	20
15	ldentifying Efficient <i>Clostridium difficile</i> Toxin A Binders with a Multivalent Neo-Glycoprotein Glycan Library. Bioconjugate Chemistry, 2019, 30, 2373-2383.	3.6	9
16	Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. Journal of Agricultural and Food Chemistry, 2019, 67, 7281-7288.	5.2	7
17	Minor lipids profiling in subcutaneous and epicardial fat tissue using LC/MS with an optimized preanalytical phase. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1113, 50-59.	2.3	9
18	The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules, 2019, 24, 599.	3.8	25

Helena PelantovÃi

#	Article	IF	CITATIONS
19	Selective β-N-acetylhexosaminidase from Aspergillus versicolor—a tool for producing bioactive carbohydrates. Applied Microbiology and Biotechnology, 2019, 103, 1737-1753.	3.6	18
20	Acceptor Specificity of β-N-Acetylhexosaminidase from Talaromyces flavus: A Rational Explanation. International Journal of Molecular Sciences, 2019, 20, 6181.	4.1	13
21	Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: the Effect of Vildagliptin, Metformin, and Their Combination. Applied Biochemistry and Biotechnology, 2019, 188, 165-184.	2.9	11
22	Enzymeâ€mediated transglycosylation of rutinose (6â€ <i>O</i> â€Î±â€ <scp>l</scp> â€rhamnosylâ€ <scp>d</scp> â€glucose) to phenolic compounds by a diglycosid from <i>Acremonium</i> sp. DSM 24697. Biotechnology and Applied Biochemistry, 2019, 66, 53-59.	a 3 £	15
23	KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry - A European Journal, 2018, 24, 17117-17124.	3.3	18
24	Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties. International Journal of Molecular Sciences, 2018, 19, 2349.	4.1	23
25	The effects of liraglutide in mice with diet-induced obesity studied by metabolomics. Journal of Endocrinology, 2017, 233, 93-104.	2.6	23
26	Twoâ€Step Enzymatic Synthesis of βâ€ <scp>d</scp> â€ <i>N</i> â€Acetylgalactosamineâ€(1→4)â€ <scp>d</scp> â€ <i>N</i> â€acetylglucosamine (L Chitooligomers for Deciphering Galectin Binding Behavior. Advanced Synthesis and Catalysis, 2017, 359, 2101-2108.	açdjNAc) 4.3	31
27	Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjugate Chemistry, 2017, 28, 2832-2840.	3.6	54
28	Chemoâ€Enzymatic Synthesis of Branched <i>N</i> â€Acetyllactosamine Glycan Oligomers for Galectinâ€3 Inhibition. Advanced Synthesis and Catalysis, 2017, 359, 4015-4024.	4.3	11
29	Semisynthesis and spectral characterization of 5-methylpyranopelargonidin and 4-methylfuropelargonidin and their separation and detection in strawberry fruit wine. Journal of Chromatography A, 2017, 1510, 40-50.	3.7	1
30	Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. International Journal of Molecular Sciences, 2017, 18, 2231.	4.1	20
31	Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE, 2017, 12, e0183449.	2.5	35
32	Towards Keratan Sulfate – Chemoenzymatic Cascade Synthesis of Sulfated <i>N</i> â€Acetyllactosamine (LacNAc) Glycan Oligomers. Advanced Synthesis and Catalysis, 2016, 358, 584-596.	4.3	11
33	Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Molecular and Cellular Endocrinology, 2016, 431, 88-100.	3.2	34
34	Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Analytical and Bioanalytical Chemistry, 2016, 408, 567-578.	3.7	26
35	Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles. Applied Microbiology and Biotechnology, 2016, 100, 2193-2202.	3.6	25
36	Synthesis of Derivatized Chitooligomers using Transglycosidases Engineered from the Fungal GH20 βâ€ <i>N</i> â€Acetylhexosaminidase. Advanced Synthesis and Catalysis, 2015, 357, 1941-1950.	4.3	37

Helena PelantovÃi

#	Article	IF	CITATIONS
37	Chemoenzymatic Synthesis of βâ€ <scp>D</scp> â€Glucosides using Cellobiose Phosphorylase from <i>Clostridium thermocellum</i> . Advanced Synthesis and Catalysis, 2015, 357, 1961-1969.	4.3	7
38	Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility–mass spectrometry of hyaluronanâ€derived oligosaccharides. Journal of Mass Spectrometry, 2015, 50, 854-863.	1.6	10
39	Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization. Journal of Agricultural and Food Chemistry, 2015, 63, 10131-10139.	5.2	41
40	Strategy for NMR metabolomic analysis of urine in mouse models of obesity— from sample collection to interpretation of acquired data. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 225-235.	2.8	17
41	Prokaryotic and Eukaryotic Aryl Sulfotransferases: Sulfation of Quercetin and Its Derivatives. ChemCatChem, 2015, 7, 3152-3162.	3.7	22
42	αâ€ <scp>L</scp> â€Rhamnosylâ€Î²â€ <scp>D</scp> â€glucosidase (Rutinosidase) from <i>Aspergillus niger</i> : Characterization and Synthetic Potential of a Novel Diglycosidase. Advanced Synthesis and Catalysis, 2015, 357, 107-117.	4.3	39
43	Inhibition of GlcNAc-Processing Glycosidases by C-6-Azido-NAG-Thiazoline and Its Derivatives. Molecules, 2014, 19, 3471-3488.	3.8	13
44	Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 47-55.	1.8	26
45	Inhibition of microbial β-N-acetylhexosaminidases by 4-deoxy- and galacto-analogues of NAG-thiazoline. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5321-5323.	2.2	1
46	Biphasic Catalysis with Disaccharide Phosphorylases: Chemoenzymatic Synthesis of α-d-Glucosides Using Sucrose Phosphorylase. Organic Process Research and Development, 2014, 18, 781-787.	2.7	21
47	Chemoenzymatic synthesis of α-l-rhamnosides using recombinant α-l-rhamnosidase from Aspergillus terreus. Bioresource Technology, 2013, 147, 640-644.	9.6	31
48	Enzymatic synthesis of new C-6-acylated derivatives of NAG-thiazoline and evaluation of their inhibitor activities towards fungal Î ² -N-acetylhexosaminidase. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 128-134.	1.8	13
49	Biotransformation of benzonitrile herbicides via the nitrile hydratase–amidase pathway in rhodococci. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1811-1819.	3.0	25
50	Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein Journal of Organic Chemistry, 2012, 8, 712-725.	2.2	33
51	Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresource Technology, 2011, 102, 9409-9415.	9.6	51
52	Charged Hexosaminides as New Substrates for βâ€∢i>Nâ€Acetylhexosaminidaseâ€Catalyzed Synthesis of Immunomodulatory Disaccharides. Advanced Synthesis and Catalysis, 2011, 353, 2409-2420.	4.3	33
53	Combinatorial Oneâ€Pot Synthesis of Polyâ€≺i>Nâ€acetyllactosamine Oligosaccharides with Leloirâ€Glycosyltransferases. Advanced Synthesis and Catalysis, 2011, 353, 2492-2500.	4.3	46
54	Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors. Carbohydrate Research, 2011, 346, 1599-1609.	2.3	26

Helena PelantovÃi

#	Article	IF	CITATIONS
55	Notes on the Asymmetric Hydrogenation of Methyl Acetoacetate in Neoteric Solvents. Catalysis Letters, 2010, 134, 279-287.	2.6	17
56	4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology, 2010, 20, 1002-1009.	2.5	36
57	Condensation reactions catalyzed by α-N-acetylgalactosaminidase fromAspergillus nigeryielding α-N-acetylgalactosaminides. Biocatalysis and Biotransformation, 2010, 28, 150-155.	2.0	5
58	Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconjugate Journal, 2009, 26, 141-159.	2.7	66
59	Quaternary ammonium salts ionic liquids for immobilization of chiral Ru-BINAP complexes in asymmetric hydrogenation of β-ketoesters. Applied Catalysis A: General, 2009, 366, 160-165.	4.3	43
60	Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 107-113.	1.8	38
61	Induction and characterization of an unusual α-d-galactosidase from Talaromyces flavus. Journal of Biotechnology, 2007, 128, 61-71.	3.8	18
62	Glycosyl Azides – An Alternative Way to Disaccharides. Advanced Synthesis and Catalysis, 2007, 349, 1514-1520.	4.3	30
63	Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases. Biotechnology Letters, 2007, 29, 1119-1124.	2.2	25
64	Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. ChemCatChem, 0, , .	3.7	2