Jaume Vilarrasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3603667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A fast procedure for the reduction of azides and nitro compounds based on the reducing ability of Sn(SR)3-species. Tetrahedron, 1990, 46, 587-594.	1.0	191
2	New synthetic "tricksâ€. Triphenylphosphine-mediated amide formation from carboxylic acids and azides. Tetrahedron Letters, 1984, 25, 4841-4844.	0.7	105
3	Cu2(OTf)2-Catalyzed and Microwave-Controlled Preparation of Tetrazoles from Nitriles and Organic Azides under Mild, Safe Conditions. Angewandte Chemie - International Edition, 2007, 46, 3926-3930.	7.2	103
4	The Performance of Several Docking Programs at Reproducing Protein–Macrolide-Like Crystal Structures. Molecules, 2017, 22, 136.	1.7	95
5	Asymmetric acetate aldol reactions in connection with an enantioselective total synthesis of macrolactin A. Tetrahedron Letters, 1996, 37, 8949-8952.	0.7	92
6	Simple and Efficient Preparation of Ketones from Morpholine Amides. Synlett, 1997, 12, 1414-1416.	1.0	76
7	Highly Enantioenriched Propargylic Alcohols by Oxazaborolidine-Mediated Reduction of Acetylenic Ketones. Journal of Organic Chemistry, 1996, 61, 9021-9025.	1.7	72
8	A New Route to 15N-Labeled, N-Alkyl, and N-Amino Nucleosides via N-Nitration of Uridines and Inosines. Journal of the American Chemical Society, 1995, 117, 3665-3673.	6.6	70
9	Catalytic Staudinger—Vilarrasa Reaction for the Direct Ligation of Carboxylic Acids and Azides. Journal of Organic Chemistry, 2009, 74, 2203-2206.	1.7	68
10	Computational comparison of microtubule-stabilising agents laulimalide and peloruside with taxol and colchicine. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4825-4829.	1.0	66
11	One-pot conversion of azides to Boc-protected amines with trimethylphosphine and Boc-ON. Tetrahedron Letters, 1998, 39, 9101-9102.	0.7	63
12	Evaluation of MNDO calculated proton affinities. Journal of Computational Chemistry, 1984, 5, 230-236.	1.5	60
13	Enantioselective Addition of a Chiral Thiazolidinethione-Derived Titanium Enolate to Acetals. Organic Letters, 2001, 3, 615-617.	2.4	60
14	MNDO semiempirical and 4-31G ab initio SCF-MO calculations of heteroaromatic compounds. Journal of Organic Chemistry, 1985, 50, 4894-4899.	1.7	58
15	Cleavage of tert-butyldimethylsilyl ethers by chloride ion. Tetrahedron Letters, 1998, 39, 327-330.	0.7	57
16	New Synthetic "tricks― [Et3NH][Sn(SPh3)] and Bu2SnH2, two useful reagents for the reduction of azides to amines. Tetrahedron Letters, 1987, 28, 5941-5944.	0.7	54
17	Enantioselective reduction of ketones catalysed by 1,3,2-oxazaborolidines prepared from phenylglycine. Tetrahedron: Asymmetry, 1994, 5, 165-168.	1.8	54
18	Synthesis of (â^')-Amphidinolide K Fragment C9â^'C22. Organic Letters, 2005, 7, 4083-4086.	2.4	54

#	Article	IF	CITATIONS
19	A practical procedure for the preparation of carbamates from azides. Tetrahedron Letters, 1999, 40, 7515-7517.	0.7	52
20	Alternative procedures for the macrolactamisation of ω-Azido Acids. Tetrahedron Letters, 1993, 34, 4671-4674.	0.7	51
21	Seebach's oxazolidinone is a good catalyst for aldol reactions. Tetrahedron Letters, 2008, 49, 5414-5418.	0.7	49
22	The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Research, 2009, 37, 3342-3353.	6.5	49
23	New synthetic â€ [~] tricks'. Advantages of using triethylphosphine in some phosphorus-based reactions. Tetrahedron Letters, 1986, 27, 4623-4624.	0.7	48
24	Relative Tendency of Carbonyl Compounds To Form Enamines. Organic Letters, 2012, 14, 536-539.	2.4	48
25	Highly Stereoselective Aldol Reactions of Titanium Enolates from Lactate-Derived Chiral Ketones. Organic Letters, 2003, 5, 519-522.	2.4	46
26	Iododesilylation of TIPS-, TBDPS-, and TBS-Substituted Alkenes in Connection with the Synthesis of Amphidinolides B/D. Organic Letters, 2011, 13, 4934-4937.	2.4	45
27	Reaction of N-nitroso- and N-nitro-N-alkylamides with amines. Journal of Organic Chemistry, 1984, 49, 3322-3327.	1.7	43
28	New synthetic â€~tricks'. Trimethylsilyl triflate mediated cleavage of hindered silyl ethers. Tetrahedron Letters, 1990, 31, 567-568.	0.7	43
29	Stereocontrolled Total Synthesis of Amphidinolide X via a Silicon-Tethered Metathesis Reaction. Organic Letters, 2008, 10, 5191-5194.	2.4	43
30	Enantioselective reduction of acetophenone with 1,3,2-oxazaborolidines derived from ephedrine, pseudoephedrine, and phenylglycine. Tetrahedron: Asymmetry, 1993, 4, 13-16.	1.8	42
31	From vicinal azido alcohols to Boc-amino alcohols or oxazolidinones, with trimethylphosphine and Boc 2 O or CO 2. Tetrahedron Letters, 2001, 42, 4995-4999.	0.7	42
32	β3-Amino acids by nucleophilic ring-opening of N-nosyl aziridines. Tetrahedron, 2001, 57, 7665-7674.	1.0	41
33	Application of the partitioning of energy in the mndo method to the study of the basicity of imidazole, pyrazole, oxazole, and isoxazole. Journal of Heterocyclic Chemistry, 1981, 18, 1189-1196.	1.4	40
34	New synthetic "tricks―One-pot preparation of N-substituted phthalimides from azides and phthalic anhydride. Tetrahedron Letters, 1986, 27, 639-640.	0.7	40
35	A synthetic approach towards octalactin A, based on the stereoselective reduction of α,β-unsaturated ketones. Tetrahedron Letters, 1995, 36, 3425-3428.	0.7	39
36	Theoretical calculations of proton affinities of azines. Prediction of the relative basicities and preferred protonation sites. Journal of Computational Chemistry, 1988, 9, 784-789.	1.5	38

#	Article	IF	CITATIONS
37	Reduction of Azides to Amines Mediated by Tin Bis(1,2-benzenedithiolate). Organic Letters, 2000, 2, 397-399.	2.4	38
38	Toward a Total Synthesis of Amphidinolide X and Y. The Tetrahydrofuran-Containing Fragment C12â^'C21. Organic Letters, 2007, 9, 989-992.	2.4	38
39	Collision-induced dissociation of cytidine and its derivatives. Journal of Mass Spectrometry, 2007, 42, 49-57.	0.7	38
40	Cyclization of 9-substituted decanoic acid derivatives to 9-decanolide and 9-decanolactam. Journal of Organic Chemistry, 1991, 56, 5132-5138.	1.7	37
41	Highly stereoselective aldol reactions of titanium enolates from ethyl α-silyloxyalkyl ketones. Tetrahedron Letters, 1997, 38, 1637-1640.	0.7	35
42	Oxazaborolidine-catalysed reduction of alk-2-ene-1,4-diones. A convenient access to chiral 1,4-diols. Tetrahedron, 1998, 54, 14947-14962.	1.0	35
43	Unprecedented Highly Stereoselective α- and β-C-Glycosidation with Chiral Titanium Enolates. Organic Letters, 2002, 4, 4651-4654.	2.4	34
44	On the Reaction of Acyl Chlorides and Carboxylic Anhydrides with Phosphazenes. Journal of Organic Chemistry, 1996, 61, 5638-5643.	1.7	33
45	Nitrosation of peptide bonds. Cleavage of nitrosated peptides by pyrrolidine and α-amino esters. Tetrahedron, 1984, 40, 3121-3127.	1.0	32
46	High-Yielding Preparation of [3-15N]Cytidine, [4-15NH2]Cytidine, and [3-15N,4-15NH2]Cytidine. Journal of Organic Chemistry, 2000, 65, 2827-2829.	1.7	32
47	New Protecting Groups for 1,2-Diols (Boc- and Moc-ethylidene). Cleavage of Acetals with Bases. Organic Letters, 2000, 2, 2809-2811.	2.4	32
48	Michael Additionâ^'Elimination Reactions of Chiral Enolates with Ethyl 3-Halopropenoates. Organic Letters, 2008, 10, 65-68.	2.4	31
49	Improved methods for the N-nitration of amides. Journal of Organic Chemistry, 1991, 56, 7038-7042.	1.7	30
50	Characterization of new mesomeric betaines arising from methylation of imidazo[2,1-c][1,2,4]triazin-4(1H)-one, pyrazolo[5,1-c][1,2,4]triazin-4(1H)-one, and 1,2,4-triazolo[5,1-c][1,2,4]triazin-4(1H)-one. Journal of Organic Chemistry, 1988, 53, 887-891.	1.7	29
51	Allylic alcohols of unexpected configuration by oxazaborolidine-catalysed reduction of α,β-unsaturated ketones. An explanation based on MO calculations. Tetrahedron: Asymmetry, 1995, 6, 2683-2686.	1.8	29
52	Pseudoaxially Disubstituted Cyclo-β3-tetrapeptide Scaffolds. Tetrahedron, 2000, 56, 7947-7958.	1.0	29
53	Enantiopure β-methoxy carboxyl derivatives from a chiral titanium enolate and dimethyl acetals. Tetrahedron Letters, 2001, 42, 4629-4631.	0.7	29
54	N-nitrosation and N-nitration of lactams. From macrolactams to macrolactones. Tetrahedron, 1989, 45, 863-868.	1.0	28

#	Article	IF	CITATIONS
55	Chemoselective protection of thiols versus alcohols and phenols. The Tosvinyl group. Tetrahedron Letters, 2003, 44, 6369-6373.	0.7	28
56	Importance of the Electron Correlation and Dispersion Corrections in Calculations Involving Enamines, Hemiaminals, and Aminals. Comparison of B3LYP, M06-2X, MP2, and CCSD Results with Experimental Data. Journal of Organic Chemistry, 2015, 80, 11977-11985.	1.7	27
57	Molecular and electronic structure of the low-lying electronic states of cycloalkenylidenes: cyclopropenylidene. Journal of the American Chemical Society, 1988, 110, 1694-1700.	6.6	26
58	Stereoselective reduction of unsaturated 1,4-diketones. A practical route to chiral 1,4-diols. Tetrahedron Letters, 1997, 38, 1091-1094.	0.7	26
59	Simple and Efficient Preparation of Enantiopure Alkyl α-Hydroxyalkyl Ketones. Synthesis, 2000, 2000, 1608-1614.	1.2	26
60	Gold(III) Complexes Catalyze Deoximations/Transoximations at Neutral pH. Angewandte Chemie - International Edition, 2011, 50, 3275-3279.	7.2	26
61	4-31G ab initio and MNDO semi-empirical calculations on bicyclic CN7–and N8species, and n.m.r. and i.r. studies on15N-labelled CN7–. Journal of the Chemical Society Chemical Communications, 1986, , 959-961.	2.0	25
62	From azido acids to macrolactams and macrolactones. Journal of the Chemical Society Chemical Communications, 1988, , 270.	2.0	24
63	N-Nitration,15N-Labeling, and N-to-N Linking of Hydroxyl-Silylated Pyrimidine Nucleosides. Journal of Organic Chemistry, 1997, 62, 1547-1549.	1.7	24
64	Efficient Approach to Fluvirucins B2â^'B5, Sch 38518, and Sch 39185. First Synthesis of their Aglycon, via CM and RCM Reactions. Organic Letters, 2009, 11, 3198-3201.	2.4	24
65	Molecular and electronic structure of the low-lying electronic states of cycloalkenylidenes. Cyclopentadienylidene. Journal of the American Chemical Society, 1988, 110, 3740-3746.	6.6	22
66	Nitrosation of hindered amides. Journal of Organic Chemistry, 1989, 54, 3209-3211.	1.7	22
67	New synthetic â€~tricks'. Direct conversion of nitro compounds to nitriles. Tetrahedron Letters, 1990, 31, 7497-7498.	0.7	22
68	Enolization of Chiral α-Silyloxy Ketones with Dicyclohexylchloroborane. Application to Stereoselective Aldol Reactions. Organic Letters, 2000, 2, 2599-2602.	2.4	22
69	Catalytic, PMe3-mediated conversion of secondary nitroalkanes to ketones: a very mild Nef-type process. Tetrahedron Letters, 2008, 49, 441-444.	0.7	22
70	Michael Reactions of Titanium Enolates of Glycolic Acid Derivatives with the Weinreb and Morpholine Amides of Acrylic Acid. Journal of Organic Chemistry, 2008, 73, 1578-1581.	1.7	22
71	High-Yielding Enantioselective Synthesis of the Macrolactam Aglycon of Sch 38516 from Two Units of (2R)-2-Ethyl-4-penten-1-ol. Angewandte Chemie - International Edition, 1999, 38, 3086-3089.	7.2	21
72	Reaction of uridines and thymidines with methyl propynoate. A new N-3 protecting group. Tetrahedron Letters, 1995, 36, 3261-3264.	0.7	20

#	Article	IF	CITATIONS
73	Epimerisation-free peptide formation from carboxylic acid anhydrides and azido derivatives. Journal of the Chemical Society Chemical Communications, 1995, , 91-92.	2.0	20
74	Uracil- and thymine-substituted thymidine and uridine derivatives. Tetrahedron Letters, 1998, 39, 1835-1838.	0.7	20
75	Efficient Preparation of <i>N</i> -Phenylsulfenyl Ketimines from Oximes or Nitro Compounds without Racemization of α-Stereocenters. Organic Letters, 2007, 9, 4635-4638.	2.4	20
76	Bocdene and Mocdene Derivatives of Catechols and Catecholamines. Organic Letters, 2001, 3, 1399-1401.	2.4	19
77	Conversion of ketoximes to ketones with trimethylphosphine and 2,2′-dipyridyl diselenide. Tetrahedron Letters, 2004, 45, 5559-5561.	0.7	19
78	Discovery of Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Competing with the Nucleotide Substrate. Angewandte Chemie - International Edition, 2007, 46, 1810-1813.	7.2	19
79	Nucleophile-Catalyzed Additions to Activated Triple Bonds. Protection of Lactams, Imides, and Nucleosides with MocVinyl and Related Groups. Journal of Organic Chemistry, 2013, 78, 5832-5842.	1.7	19
80	New synthetic â€~tricks'. A novel one-pot procedure for the conversion of primary nitro groups into aldehydes. Tetrahedron Letters, 1990, 31, 7499-7500.	0.7	18
81	A simple procedure for the preparation of enantiopure ethyl α-hydroxyalkyl ketones. Tetrahedron Letters, 1997, 38, 1633-1636.	0.7	18
82	Synthesis of Amphidinolide E C10â^'C26 Fragment. Organic Letters, 2008, 10, 4843-4846.	2.4	18
83	Reaction of Dess–Martin periodinane with 2-(alkylselenyl)pyridines. Dehydration of primary alcohols under extraordinarily mild conditions. Tetrahedron Letters, 2010, 51, 1863-1866.	0.7	18
84	13C and proton nuclear magnetic resonance spectra oftrans-[arylbromobis(triethyl) Tj ETQq0 0 0 rgBT /Overlock 1 Pt(PEt3)2X groups. Magnetic Resonance in Chemistry, 1986, 24, 243-246.	.0 Tf 50 30 1.1)7 Td (phos 17
85	Synthetic routes to the stereoisomers of 2,4-dimethylpentane-1,5-diol derivatives. Tetrahedron Letters, 2003, 44, 8805-8809.	0.7	17
86	New synthetic "tricks―using old reagents. A mild method for the conversion of RCONHR′ to RCONHR″. Tetrahedron Letters, 1982, 23, 1127-1128.	0.7	16
87	Stabilisation of pyrimidine nucleoside triflates by N-nitro groups. Tetrahedron Letters, 1998, 39, 7575-7578.	0.7	16
88	Computer-Aided Insight into the Relative Stability of Enamines. Synthesis, 2017, 49, 5285-5306.	1.2	16
89	Substituent Effects on the Low-Lying Singlet and Triplet States of Methylene. Journal of Computational Chemistry, 1986, 7, 428-442.	1.5	15
90	AM1 study of the protonation of pteridine-related tetraazanaphthalenes. Journal of Organic Chemistry, 1988, 53, 3900-3903.	1.7	15

#	Article	IF	CITATIONS
91	Reactivity of diazoazoles with electron-rich double bonds. Journal of the Chemical Society Perkin Transactions II, 1990, , 1943-1950.	0.9	15
92	Transfer of 1-Alkenyl Groups between Secondary Amines. Relative Stability and Reactivity of Enamines from Popular Organocatalysts. Organic Letters, 2014, 16, 2900-2903.	2.4	15
93	New bicyclic nucleosides related to 6-azaisocytidine. Tetrahedron Letters, 1996, 37, 901-904.	0.7	14
94	Design and synthesis of a novel cyclo-Î ² -tetrapeptide. Tetrahedron Letters, 1999, 40, 2629-2632.	0.7	14
95	Reaction of chiral titanium Z-enolates with chiral α-silyloxy aldehydes. Syntheses of NFX-2 and Antimycinone. Tetrahedron Letters, 1999, 40, 5083-5086.	0.7	14
96	AuBr3-Catalyzed Thiooxime-to-Carbonyl Conversion: From Chiral Aliphatic Nitro Compounds to Ketones without Racemization. Organic Letters, 2009, 11, 4414-4417.	2.4	14
97	Mechanism of Action of the Cytotoxic Macrolides Amphidinolide X and J. ChemBioChem, 2011, 12, 1027-1030.	1.3	14
98	Formal Total Synthesis of Amphidinolide E. Journal of Organic Chemistry, 2017, 82, 11021-11034.	1.7	14
99	From (E)- and (Z)-ketoximes to N -sulfenylimines, ketimines or ketones at will. Application to erythromycin derivatives. Tetrahedron Letters, 2004, 45, 5563-5567.	0.7	13
100	2,5-DIAZACYCLOPENTADIENYUDENE: A STANDARD CARBENE OR A HIGHLY REACTIVE DIRADICAL ?. Chemistry Letters, 1980, 9, 1489-1492.	0.7	12
101	Reaction of achiral titanium Z-enolates with chiral α-silyloxy aldehydes. Tetrahedron Letters, 1999, 40, 5079-5082.	0.7	12
102	¹⁵ N Double-Labeled Guanosine from Inosine through Ring-Openingâ^Ring-Closing and One-Pot Pd-Catalyzed Câ^O and Câ^N Cross-Coupling Reactions. Journal of Organic Chemistry, 2010, 75, 4880-4883.	1.7	12
103	Thymidine- and AZT-linked 5-(1,3-dioxoalkyl)tetrazoles and 4-(1,3-dioxoalkyl)-1,2,3-triazoles. Tetrahedron Letters, 2012, 53, 514-518.	0.7	12
104	6-Pivaloyl-1,2,3,3a,6-pentaazapentalene. Steric effects on the 2-azidoimidazole/imidazo[1,2-d]tetrazole equilibrium. Tetrahedron Letters, 1976, 17, 4175-4176.	0.7	11
105	An unexpected reaction in the lactamisation of 13-azido-13-deoxy-(9S)-9-dihydroerythronolide a seco-acid derivatives. Tetrahedron Letters, 1992, 33, 3669-3672.	0.7	11
106	Azide- or fluorine-containing 2′ & 3′-azolyluridines by regioselective opening of 1-(2′,3′-anhydro-β-d-lyxofuranosyl)uracils. Tetrahedron Letters, 1992, 33, 4069-4072.	0.7	11
107	Syntheses of the C-1 alkyl side chains of Zaragozic acids A and C. Tetrahedron Letters, 1998, 39, 6765-6768.	0.7	11
108	Hybrids of macrolides and nucleobases or nucleosides. Tetrahedron Letters, 2000, 41, 3371-3375.	0.7	11

#	Article	IF	CITATIONS
109	A Direct, Efficient Method for the Preparation of N6-Protected15N-Labeled Adenosines. Journal of Organic Chemistry, 2004, 69, 5473-5475.	1.7	11
110	How Small Amounts of Impurities Are Sufficient to Catalyze the Interconversion of Carbonyl Compounds and Iminium Ions, or Is There a Metathesis through 1,3â€Oxazetidinium Ions? Experiments, Speculations, and Calculations. Helvetica Chimica Acta, 2014, 97, 1177-1203.	1.0	11
111	Nitrene-like behaviour of diazoazoles?. Journal of the Chemical Society Chemical Communications, 1986, , 1127-1129.	2.0	10
112	New synthetic "tricks― From aliphatic amines and amides to azides and/or how to convert RNHCOR′ into RNHCORâ€3 avoiding drastic hydrolyses. Tetrahedron Letters, 1987, 28, 341-342.	0.7	10
113	A synthetic approach to palmerolides via Negishi cross coupling. The challenge of the C15–C16 bond formation. Tetrahedron Letters, 2014, 55, 4623-4627.	0.7	10
114	Computational Study of the Addition of Methanethiol to 40+ Michael Acceptors as a Model for the Bioconjugation of Cysteines. Journal of Organic Chemistry, 2021, 86, 7107-7118.	1.7	10
115	A 200-MHz proton NMR study of the naphtho[2,1-e]-as-triazine/naphtho[2,1-e]tetrazolo[1,5-b]-as-triazine/naphtho	azine	9
116	Tosvinyl and Besvinyl as Protecting Groups of Imides, Azinones, Nucleosides, Sultams, and Lactams. Catalytic Conjugate Additions to Tosylacetylene. Journal of Organic Chemistry, 2014, 79, 8826-8834.	1.7	9
117	Total Synthesis of Amphidinolide K, a Macrolide That Stabilizes F-Actin. Journal of Organic Chemistry, 2015, 80, 8511-8519.	1.7	9
118	Further Insight into the Interactions of the Cytotoxic Macrolides Laulimalide and Peloruside A with Their Common Binding Site. ACS Omega, 2018, 3, 1770-1782.	1.6	9
119	(<i>Z</i>)-Oxopropene-1,3-diyl, a Linker for the Conjugation of the Thiol Group of Cysteine with Amino-Derivatized Drugs. Journal of Organic Chemistry, 2019, 84, 11170-11176.	1.7	9
120	Stereoselective synthesis of syn,syn-2-methyl-1,3-diols through one-pot aldol–reduction sequence. Tetrahedron Letters, 2002, 43, 6145-6148.	0.7	8
121	A novel nucleophilic approach to 1-alkyladenosines. A two-step synthesis of [1-15N]adenosine from inosine. Chemical Communications, 2005, , 3968.	2.2	8
122	[N,1-15N2]-2â€~-Deoxyadenosines. Organic Letters, 2005, 7, 2477-2479.	2.4	8
123	Pd-catalysed amidation of 2,6-dihalopurine nucleosides. Replacement of iodine at 0°C. Tetrahedron Letters, 2012, 53, 1358-1362.	0.7	8
124	A Short Route to[3-15N]-3′-Azido-3′-deoxythymidine(N3-Labeled AZT) via 3-Nitro-AZT. Angewandte Chemie International Edition in English, 1995, 33, 2454-2455.	4.4	7
125	Cyclic sulfates as synthetic equivalents of \hat{I}_{\pm} -epoxynucleosides. Tetrahedron Letters, 1999, 40, 9111-9113.	0.7	7
126	Synthesis of amphidinolide Y precursors. Tetrahedron Letters, 2014, 55, 900-902.	0.7	7

#	Article	IF	CITATIONS
127	NMR and Computational Studies on the Reactions of Enamines with Nitroalkenes That May Pass through Cyclobutanes. ACS Omega, 2019, 4, 18167-18194.	1.6	7
128	Comparing and taming the reactivity of HWE and Wittig reagents with cyclic hemiacetals. Tetrahedron Letters, 2011, 52, 5153-5156.	0.7	6
129	Oxazolidinone/enamine ratios in the reactions of α-silyloxy and α-alkoxy aldehydes with proline. Tetrahedron Letters, 2013, 54, 6381-6384.	0.7	6
130	Clarithromycin–adenine and related conjugates. Tetrahedron Letters, 2006, 47, 1919-1922.	0.7	5
131	Further insights into the organocatalytic reaction of 2,2-dimethyl-1,3-dioxan-5-one with α-silyloxy aldehydes. Tetrahedron Letters, 2016, 57, 5254-5258.	0.7	5
132	Theoretical investigation of the energy, structure, vibrational frequencies, and infrared intensities of low-lying electronic states of the symmetric azacyclopentadienylidenes. The Journal of Physical Chemistry, 1991, 95, 10623-10630.	2.9	4
133	ALKYLATION OF TRIMETHYLSILYLCYCLOPENTADIENIDE ANION WITHtert-BUTYL BROMOACETATE. A DESILYLATION REACTION ASSISTED BY A REMOTE STERIC REPULSION. Chemistry Letters, 1982, 11, 1189-1190.	0.7	3
134	Acyclic nucleoside analogues from thymine-substituted thymidines and related compounds. Tetrahedron, 1999, 55, 6635-6642.	1.0	3
135	Advantages of the Ns group in the reactions of N1-SO2R inosines with benzylamine and with 15NH3. Tetrahedron Letters, 2005, 46, 5127-5130.	0.7	3
136	Lettters in Organic Chemistry Hydroiodination of Terminal Double Bonds Via Hydroboration or Hydrozirconation in Connection with the Total Synthesis of Fluvirucins. Letters in Organic Chemistry, 2006, 3, 183-186.	0.2	2
137	Eine kurze Synthese von [3â€≺sup>15N]â€3′â€Azidoâ€3′â€desoxythymidin (N3â€markiertes AZT) Â Angewandte Chemie, 1994, 106, 2535-2537.	żber 3á 1.6	à€Nitroâ€AZ
138	Synthesis of benzo-, pyrido-, thieno- and imidazo-fused N-hydroxy-4-oxopyrimidine-2-carboxylic acid derivatives. Tetrahedron Letters, 2011, 52, 753-756.	0.7	1
139	BMS Derivatives C7â€Linked to βâ€Cyclodextrin and Hyperbranched Polyglycerol Retain Activity against R5â€HIVâ€I NLAD8 Isolates and Can Be Deemed Potential Microbicides. ChemMedChem, 2021, 16, 2217-2222.	1.6	1
140	Amino-Catalyzed Reactions of Aldehydes with Chiral Nitroalkenes. Organic Letters, 2021, 23, 651-655.	2.4	1
141	Highly Stereoselective Aldol Reactions of Titanium Enolates from Lactate-Derived Chiral Ketones ChemInform, 2003, 34, no.	0.1	0
142	Chemoselective Protection of Thiols versus Alcohols and Phenols. The Tosvinyl Group ChemInform, 2003, 34, no.	0.1	0
143	Conversion of Ketoximes to Ketones with Trimethylphosphine and 2,2′-Dipyridyl Diselenide ChemInform, 2004, 35, no.	0.1	0
144	Electrospray ionization mass spectra of the reactions of NaAuBr ₄ and related aurates with nucleophiles. Journal of Mass Spectrometry, 2014, 49, 331-334.	0.7	0

#	Article	IF	CITATIONS
145	Computational Study of the Stability of Pyrrolidine-Derived Iminium Ions: Exchange Equilibria between Iminium Ions and Carbonyl Compounds. ACS Omega, 0, , .	1.6	0