Ri-Qing Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3603576/publications.pdf

Version: 2024-02-01

840776 940533 16 634 11 16 citations h-index g-index papers 16 16 16 594 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperature compensated fiber optic magnetic sensor based on the combination interference principle. Optics Letters, 2022, 47, 2558.	3.3	6
2	A novel high accuracy optical path difference compensation method based on phase difference technology. Optics and Lasers in Engineering, 2021, 137, 106367.	3.8	12
3	Magnetic Field Measurement Method Based on the Magneto-Volume Effect of Hollow Core Fiber Filled With Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	5
4	High-sensitivity special open-cavity Mach–Zehnder structure for salinity measurement based on etched double-side hole fiber. Optics Letters, 2021, 46, 2714.	3.3	12
5	High-sensitivity special open-cavity Mach–Zehnder structure for salinity measurement based on etched double-side hole fiber: publisher's note. Optics Letters, 2021, 46, 3069.	3.3	3
6	Reflective Highly Sensitive Fabry–Perot Magnetic Field Sensor Based on Magneto-Volume Effect of Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	4.7	18
7	Reflective Optical Fiber Sensor Based on Dual Fabry Perot Cavities for Simultaneous Measurement of Salinity and Temperature. IEEE Sensors Journal, 2021, 21, 27495-27502.	4.7	16
8	High-sensitivity salinity measurement sensor based on no-core fiber. Sensors and Actuators A: Physical, 2020, 305, 111947.	4.1	31
9	Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Optical Fiber Technology, 2018, 41, 1-6.	2.7	48
10	Magnetic field sensor based on the magnetic-fluid-clad combined with singlemode–multimode–singlemode fiber and large core-offset splicing structure. Measurement Science and Technology, 2018, 29, 035204.	2.6	11
11	High-sensitivity temperature sensor based on single-mode fiber for temperature-measurement application in the ocean. Optical Engineering, 2018, 57, 1.	1.0	4
12	Fiber Optic Fabry-Perot Magnetic Field Sensor With Temperature Compensation Using a Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 2210-2214.	4.7	94
13	Magnetic Fluid-Filled Optical Fiber Fabry–Pérot Sensor for Magnetic Field Measurement. IEEE Photonics Technology Letters, 2014, 26, 217-219.	2.5	108
14	Tunable Characteristics and Mechanism Analysis of the Magnetic Fluid Refractive Index With Applied Magnetic Field. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	74
15	Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Optics and Laser Technology, 2012, 44, 899-902.	4.6	136
16	Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics. Journal of Magnetism and Magnetic Materials, 2011, 323, 2987-2996.	2.3	56