Brian Derby

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/360325/brian-derby-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,076 56 109 293 h-index g-index citations papers 14,632 7.17 304 5.9 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
293	Influence of twin boundaries and sample dimensions on the mechanical behavior of Ag nanowires. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2022 , 829, 142150	5.3	Ο
292	Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid In and Cu-In Alloy Substrates. <i>Catalysts</i> , 2021 , 11, 1318	4	0
291	Chemical Vapor Deposition of Graphene on Cu-Ni Alloys: The Impact of Carbon Solubility. <i>Coatings</i> , 2021 , 11, 892	2.9	O
290	Twist boundary defects in penta-twinned silver nanowires. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2928	8-2930)
289	Impact of polymorphism on mechanical properties of molecular crystals: a study of p-amino and p-nitro benzoic acid with nanoindentation. <i>CrystEngComm</i> , 2021 , 23, 2027-2033	3.3	4
288	Probing anisotropic mechanical behaviour in carbamazepine form III. <i>CrystEngComm</i> , 2021 , 23, 5826-58	3 8 .3	2
287	Brittle Behavior in Aspirin Crystals: Evidence of Spalling Fracture. <i>Crystal Growth and Design</i> , 2021 , 21, 1786-1790	3.5	2
286	Stability of Lines with Zero Receding Contact Angle Produced by Inkjet Printing at Small Drop Volume. <i>Langmuir</i> , 2021 , 37, 26-34	4	5
285	Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid Sn and Cu-Sn Alloy Substrates. <i>Nanomaterials</i> , 2020 , 10,	5.4	2
284	Aberrant Differentiation of Human Pluripotent Stem Cell-Derived Kidney Precursor Cells inside Mouse Vascularized Bioreactors. <i>Nephron</i> , 2020 , 144, 509-524	3.3	1
283	Tiled Monolayer Films of 2D Molybdenum Disulfide Nanoflakes Assembled at Liquid/Liquid Interfaces. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 25125-25134	9.5	5
282	The systemic influence of chronic smoking on skin structure and mechanical function. <i>Journal of Pathology</i> , 2020 , 251, 420-428	9.4	6
281	Probing Ink-Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging. <i>ACS Applied Materials & Discrete Section</i> , 12, 34254-34264	9.5	12
280	Chemical vapour deposition of graphene on copper-nickel alloys: the simulation of a thermodynamic and kinetic approach. <i>Nanoscale</i> , 2020 , 12, 15283-15294	7.7	3
279	Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment. <i>Journal of Membrane Science</i> , 2020 , 603, 118007	9.6	76
278	Size effects on strength and plasticity of ferrite and austenite pillars in a duplex stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139883	5.3	5
277	Direct 3D printing of graphene using capillary suspensions. <i>Nanoscale</i> , 2020 , 12, 11440-11447	7.7	13

(2018-2020)

276	Water-based highly conductive graphene inks for fully printed humidity sensors. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 455304	3	12
275	Patterned, morphing composites via maskless photo-click lithography. <i>Soft Matter</i> , 2020 , 16, 1270-1278	3.6	2
274	The formation mechanism of hexagonal MoC defects in CVD graphene grown on liquid copper. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 2176-2180	3.6	7
273	Geometrical constraints on the bending deformation of Penta-twinned silver nanowires. <i>Acta Materialia</i> , 2020 , 185, 110-118	8.4	7
272	Acoustic Poration and Dynamic Healing of Mammalian Cell Membranes during Inkjet Printing. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 749-757	5.5	5
271	Isomechanical Groups in Molecular Crystals and Role of Aromatic Interactions. <i>Crystal Growth and Design</i> , 2020 , 20, 7516-7525	3.5	5
270	Nanoindentation of Molecular Crystals: Lessons Learned from Aspirin. <i>Crystal Growth and Design</i> , 2020 , 20, 5956-5966	3.5	16
269	High-Power Energy Storage from Carbon Electrodes Using Highly Acidic Electrolytes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20701-20711	3.8	1
268	Fluid/Fiber Interactions and the Conductivity of Inkjet Printed Ag on Textile Substrates. <i>ACS Applied Materials & District Ages</i> , 2020, 12, 45516-45524	9.5	5
267	Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. <i>Biofabrication</i> , 2020 ,	10.5	11
266	Fatigue and the electrical resistance of silver nanowire networks. <i>Scripta Materialia</i> , 2020 , 181, 97-100	5.6	5
265	The size dependent strength of Fe, Nb and V micropillars at room and low temperature. <i>Materialia</i> , 2019 , 7, 100424	3.2	9
264	Synthetic 2-D lead tin sulfide nanosheets with tuneable optoelectronic properties from a potentially scalable reaction pathway. <i>Chemical Science</i> , 2019 , 10, 1035-1045	9.4	7
263	Experimental study of the parameters for stable drop-on-demand inkjet performance. <i>Physics of Fluids</i> , 2019 , 31, 032004	4.4	65
262	Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 32225-32234	9.5	86
261	Angiogenesis and tissue formation driven by an arteriovenous loop in the mouse. <i>Scientific Reports</i> , 2019 , 9, 10478	4.9	6
260	Supercapacitor Electrodes from the in Situ Reaction between Two-Dimensional Sheets of Black Phosphorus and Graphene Oxide. <i>ACS Applied Materials & District Materials & District</i>	9.5	38
259	Structural, Mechanical, Imaging and in Vitro Evaluation of the Combined Effect of Gd and Dy in the ZrO-SiO Binary System. <i>Inorganic Chemistry</i> , 2018 , 57, 4602-4612	5.1	6

258	Interdependence of Resistance and Optical Transmission in Conductive Nanowire Networks. <i>Advanced Theory and Simulations</i> , 2018 , 1, 1700011	3.5	9
257	Fully printed high performance humidity sensors based on two-dimensional materials. <i>Nanoscale</i> , 2018 , 10, 5599-5606	7.7	101
256	Black phosphorus with near-superhydrophobic properties and long-term stability in aqueous media. <i>Chemical Communications</i> , 2018 , 54, 3831-3834	5.8	22
255	A definition of bioinks and their distinction from biomaterial inks. <i>Biofabrication</i> , 2018 , 11, 013001	10.5	273
254	Biofabrication: A Guide to Technology and Terminology. <i>Trends in Biotechnology</i> , 2018 , 36, 384-402	15.1	309
253	Tetragonal to Cubic Transformation of SiO-Stabilized ZrO Polymorph through Dysprosium Substitutions. <i>Inorganic Chemistry</i> , 2017 , 56, 1273-1281	5.1	19
252	Inkjet printing ultra-large graphene oxide flakes. 2D Materials, 2017, 4, 021021	5.9	42
251	Stabilization of a t-ZrO polymorph in a glassy SiO matrix at elevated temperatures accomplished by ceria additions. <i>Dalton Transactions</i> , 2017 , 46, 6884-6893	4.3	15
250	Solution processing of two-dimensional black phosphorus. Chemical Communications, 2017, 53, 1445-14	- 558 8	55
249	Peptide hydrogel in vitro non-inflammatory potential. <i>Journal of Peptide Science</i> , 2017 , 23, 148-154	2.1	15
248	Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17446-17456	16.4	135
247	Controlling Coffee Ring Formation during Drying of Inkjet Printed 2D Inks. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700944	4.6	49
246	Integrating Cell Sheets for Organ-on-a-chip Applications. <i>Procedia CIRP</i> , 2017 , 65, 127-130	1.8	0
245	Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. <i>Biofabrication</i> , 2017 , 9, 033001	10.5	20
244	Implication of Free Fatty Acids in Thrombin Generation and Fibrinolysis in Vascular Inflammation in Zucker Rats and Evolution with Aging. <i>Frontiers in Physiology</i> , 2017 , 8, 949	4.6	5
243	Biomechanical Changes of Collagen Cross-Linking on Human Keratoconic Corneas Using Scanning Acoustic Microscopy. <i>Current Eye Research</i> , 2016 , 41, 609-15	2.9	5
242	Pristine Graphene Aerogels by Room-Temperature Freeze Gelation. Advanced Materials, 2016, 28, 7993	-8400	100
241	Biofabrication: reappraising the definition of an evolving field. <i>Biofabrication</i> , 2016 , 8, 013001	10.5	387

240	Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing. <i>Journal of Materials Engineering and Performance</i> , 2016 , 25, 2615-2625	1.6	8
239	A pilot study of scanning acoustic microscopy as a tool for measuring arterial stiffness in aortic biopsies. <i>Artery Research</i> , 2016 , 13, 1-5	2.2	11
238	Frequency-modulated atomic force microscopy localises viscoelastic remodelling in the ageing sheep aorta. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 64, 10-7	4.1	14
237	An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention. <i>Wound Repair and Regeneration</i> , 2016 , 24, 1089-1096	3.6	8
236	High throughput cryopreservation of cells by rapid freezing of sub-lldrops using inkjet printingcryoprinting. <i>Lab on A Chip</i> , 2015 , 15, 3503-13	7.2	17
235	Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions. <i>Ceramics International</i> , 2015 , 41, 8425-8432	5.1	140
234	Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals. <i>Journal of the American Chemical Society</i> , 2015 , 137, 12689-96	16.4	187
233	Additive Manufacture of Ceramics Components by Inkjet Printing. <i>Engineering</i> , 2015 , 1, 113-123	9.7	123
232	Introduction: Aging and the Mechanical Properties of Tissues. <i>Engineering Materials and Processes</i> , 2015 , 1-6		2
231	Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells. <i>Biophysical Journal</i> , 2014 , 107, 1502-12	2.9	33
230	Localized micro- and nano-scale remodelling in the diabetic aorta. <i>Acta Biomaterialia</i> , 2014 , 10, 4843-48	510.8	20
229	Influence of specimen thickness on the nanoindentation of hydrogels: measuring the mechanical properties of soft contact lenses. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 35, 144-56	4.1	25
228	Scanning acoustic microscopy of biological cryosections: the effect of local thickness on apparent acoustic wave speed. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1621, 143-148		
227	Inkjet printing biomaterials for tissue engineering: bioprinting. <i>International Materials Reviews</i> , 2014 , 59, 430-448	16.1	193
226	Wide-Area Strain Sensors based upon Graphene-Polymer Composite Coatings Probed by Raman Spectroscopy. <i>Advanced Functional Materials</i> , 2014 , 24, 2865-2874	15.6	102
225	Biomechanical changes after repeated collagen cross-linking on human corneas assessed in vitro using scanning acoustic microscopy 2014 , 55, 1549-54		17
224	Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. <i>Arthritis Research and Therapy</i> , 2014 , 16, R67	5.7	92
223	Inkjet Printing Graphene-Based Transparent Conductive Films. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1699, 36		1

222	Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. <i>Current Biology</i> , 2013 , 23, 271-81	6.3	258
221	Influence of gas phase equilibria on the chemical vapor deposition of graphene. ACS Nano, 2013, 7, 310	41677	49
220	Scanning acoustic microscopy for mapping the microelastic properties of human corneal tissue. <i>Current Eye Research</i> , 2013 , 38, 437-44	2.9	21
219	Current concepts and advances in the application of tissue engineering in otorhinolaryngology and head and neck surgery. <i>Journal of Laryngology and Otology</i> , 2013 , 127, 114-20	1.8	5
218	Biomechanical properties of human corneas following low- and high-intensity collagen cross-linking determined with scanning acoustic microscopy 2013 , 54, 5273-80		46
217	Printing and prototyping of tissues and scaffolds. <i>Science</i> , 2012 , 338, 921-6	33.3	816
216	Formation of coffee stains on porous surfaces. <i>Langmuir</i> , 2012 , 28, 5331-8	4	53
215	Inkjet printed carbon nanotube networks: the influence of drop spacing and drying on electrical properties. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 315304	3	19
214	Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds. <i>Biofabrication</i> , 2012 , 4, 045002	10.5	21
213	Multi-layer phase analysis: quantifying the elastic properties of soft tissues and live cells with ultra-high-frequency scanning acoustic microscopy. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2012 , 59, 610-20	3.2	21
212	Continuous Deposition of a Liquid Thread onto a Moving Substrate. Numerical Analysis and Comparison With Experiments. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2012 , 134,	2.1	10
211	Ink-Jet Printing of Zirconia: Coffee Staining and Line Stability. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3787-3792	3.8	53
210	Inkjet printing ceramics: From drops to solid. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 2543-25	550	226
209	Localised micro-mechanical stiffening in the ageing aorta. <i>Mechanisms of Ageing and Development</i> , 2011 , 132, 459-67	5.6	39
208	The mechanical properties of float glass surfaces measured by nanoindentation and acoustic microscopy. <i>Acta Materialia</i> , 2011 , 59, 1790-1799	8.4	22
207	Characterizing the elastic properties of tissues. <i>Materials Today</i> , 2011 , 14, 96-105	21.8	184
206	Photopolymerization of Pluronic F127 diacrylate: a colloid-templated polymerization. <i>Soft Matter</i> , 2011 , 7, 4928	3.6	29
205	Inkjet printing and cell seeding thermoreversible photocurable gel structures. <i>Soft Matter</i> , 2011 , 7, 263	93.6	58

(2009-2011)

204	Deformation mechanisms in gold nanowires and nanoporous gold. <i>Philosophical Magazine</i> , 2011 , 91, 1070-1083	1.6	46
203	Quantifying Micro-mechanical Properties of Soft Biological Tissues with Scanning Acoustic Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1301, 181		4
202	Strain gradients and the strength of nanoporous gold. <i>Journal of Materials Research</i> , 2010 , 25, 746-753	2.5	14
201	The Effect of Type 1 Diabetes on the Structure and Function of Fibrillin Microfibrils. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1274, 1		4
200	Formation and stability of lines produced by inkjet printing. <i>Langmuir</i> , 2010 , 26, 10365-72	4	181
199	Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. <i>Annual Review of Materials Research</i> , 2010 , 40, 395-414	12.8	1119
198	Inkjet Printing of Catalyst-Inks on Si Wafers and the Subsequent Synthesis of Carbon Nanotubes by Chemical Vapour Deposition. <i>Key Engineering Materials</i> , 2010 , 442, 7-14	0.4	4
197	Inkjet delivery of glucose oxidase. <i>Chemical Communications</i> , 2010 , 46, 5452-4	5.8	25
196	Pyrolysis of aluminium loaded polymethylsiloxanes: the influence of Al/PMS ratio on mullite formation. <i>Journal of Materials Science</i> , 2010 , 45, 233-241	4.3	4
195	High-strength nanoporous silver produced by inkjet printing. <i>Scripta Materialia</i> , 2010 , 63, 308-311	5.6	33
194	Piezoelectric Inkjet Printing of Cells and Biomaterials 2010 , 35-50		2
193	Low Curing Temperature Silver Tracks from Soluble Inks. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1192, 21		
192	Inkjet printing of Enzymes for Glucose Biosensors. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1191, 86		1
191	Novel Gelation System For Fabricating 3-D Structures via Ink Jet Printing. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1239, 1		
190	The Micromechanisms of Deformation in Nanoporous Gold. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1224, 1		
189	Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues. <i>Journal of Materials Research</i> , 2009 , 24, 638-646	2.5	67
188	A universal scaling law for the strength of metal micropillars and nanowires. <i>Scripta Materialia</i> , 2009 , 61, 524-527	5.6	112
187	Diversity of funding sources and topics is key to survival. <i>Nature</i> , 2009 , 458, 281	50.4	1

186	Limits to feature size and resolution in ink jet printing. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 913-918	6	134
185	Inkjet Printing Glucose Oxidase for Biosensor Applications. <i>ECS Transactions</i> , 2009 , 16, 15-20	1	4
184	Universal Scaled Strength Behaviour for Micropillars and Nanoporous Materials. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1185, 79		1
183	Conical tungsten stamps for the replication of pore arrays in anodic aluminium oxide films. <i>Nanotechnology</i> , 2009 , 20, 245304	3.4	6
182	Fabrication of a Glucose Biosensor by Piezoelectric Inkjet Printing 2009,		10
181	Mapping the Micromechanical Properties of Cryo-sectioned Aortic Tissue with Scanning Acoustic Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1132E, ukpmcpa27262		9
180	Duplication and plagiarism increasing among students. <i>Nature</i> , 2008 , 452, 29	50.4	8
179	The strength of gold nanowire forests. <i>Scripta Materialia</i> , 2008 , 59, 151-154	5.6	53
178	Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5717		242
177	Manufacture of 3-dimensional objects by reactive inkjet printing. Soft Matter, 2008, 4, 2513	3.6	16
176	The Growth and Mechanical Properties of Gold Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1086, 1		1
175	The Strength of Gold Nanowires and Nanoporous Gold. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1144, 1		1
174	Nanoindentation of Histological Specimens using an Extension of the Oliver and Pharr Method. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1097, 1		2
173	Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. <i>Biomaterials</i> , 2008 , 29, 193-203	15.6	374
172	Residual stress distributions around indentations and scratches in polycrystalline Al2O3 and Al2O3/SiC nanocomposites measured using fluorescence probes. <i>Acta Materialia</i> , 2008 , 56, 140-149	8.4	35
171	Correlations for single-crystal elastic constants of compound semiconductors and their representation in isomechanical groups. <i>Physical Review B</i> , 2007 , 76,	3.3	18
170	The effect of focused ion beam machining on residual stress and crack morphologies in alumina. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 219-222	0.3	13
169	Review: bioprinting: a beginning. <i>Tissue Engineering</i> , 2006 , 12, 631-4		239

(2004-2006)

168	Mullite formation from the pyrolysis of aluminium-loaded polymethylsiloxanes: The influence of aluminium powder characteristics. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 1107-1119	6	10
167	Direct ink-jet printing and low temperature conversion of conductive silver patterns. <i>Journal of Materials Science</i> , 2006 , 41, 4153-4158	4.3	218
166	Oscillatory Incompressible Fluid Flow in a Tapered Tube With a Free Surface in an Inkjet Print Head. Journal of Fluids Engineering, Transactions of the ASME, 2005 , 127, 98-109	2.1	17
165	Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. <i>Journal of Applied Physics</i> , 2005 , 97, 094903	2.5	225
164	Alumina/Silicon Carbide Nanocomposites by Hybrid Polymer/Powder Processing: Microstructures and Mechanical Properties. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 41-48	3.8	65
163	Perspectives on the European Patent System. <i>Journal of World Intellectual Property</i> , 2005 , 1, 949-962	0.7	
162	Viscosity and Acoustic Behavior of Ceramic Suspensions Optimized for Phase-Change Ink-Jet Printing. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 802-808	3.8	40
161	Ink-Jet Printing and Sintering of PZT. Journal of the American Ceramic Society, 2005, 88, 2053-2058	3.8	82
160	Intermediate Phases in Mullite Synthesis Via Aluminum- and Alumina-Filled Polymethylsiloxane. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 2085-2091	3.8	15
159	A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 315-318	4.8	260
158	Ink-Jet Printing of Wax-Based PZT Suspensions. <i>Key Engineering Materials</i> , 2004 , 264-268, 697-700	0.4	
157	Ink Jet printing of mammalian primary cells for tissue engineering applications. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 845, 71		2
156	Droplet Behaviour in Inkjet Printing. Materials Research Society Symposia Proceedings, 2004 , 860, 13		1
155	Hot-Isostatic-Press Joining of Cemented Carbides. <i>Journal of the American Ceramic Society</i> , 2004 , 82, 3616-3618	3.8	О
154	In Situ Characterization of Interfaces between Liquid Tin Vanadium Alloys and Alumina by Neutron Reflection Spectroscopy. <i>Journal of the American Ceramic Society</i> , 2004 , 87, 279-285	3.8	8
153	Characterisation of Interfaces Between Liquid Tin and Alumina in the Presence of Titanium Alloy Additions. <i>Journal of Materials Science</i> , 2004 , 12, 29-37		5
152	Preparation of PZT suspensions for direct ink jet printing. <i>Journal of the European Ceramic Society</i> , 2004 , 24, 1069-1072	6	31
151	Modelling of R-curve behaviour in ceramicThetal laminates. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2004 , 365, 196-201	5.3	4

150	Numerical and experimental comparisons of mass transport rate in a piezoelectric drop-on-demand inkjet print head. <i>International Journal of Mechanical Sciences</i> , 2004 , 46, 181-199	5.5	30
149	Thermal stress induced microcracking in alumina 20% SiCp composites. <i>Acta Materialia</i> , 2004 , 52, 1621-	1 <i>6</i> 249	38
148	Measured Anisotropy of Alumina Components Produced by Direct Ink-Jet Printing. <i>Key Engineering Materials</i> , 2004 , 264-268, 693-696	0.4	11
147	Characterisation of void and reinforcement distributions in a metal matrix composite by X-ray edge-contrast microtomography. <i>Scripta Materialia</i> , 2003 , 48, 1259-1264	5.6	9
146	Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. <i>Biomaterials</i> , 2003 , 24, 1487-97	15.6	292
¹ 45	Multilayer nitride coatings by closed field unbalanced magnetron sputter ion plating. <i>Surface and Coatings Technology</i> , 2003 , 162, 276-287	4.4	18
144	Yttrium Silicate Powders Produced by the Sol G el Method, Structural and Thermal Characterization. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 1595-1597	3.8	27
143	Inkjet Printing of Highly Loaded Particulate Suspensions. <i>MRS Bulletin</i> , 2003 , 28, 815-818	3.2	209
142	Oscillatory limited compressible fluid flow induced by the radial motion of a thick-walled piezoelectric tube. <i>Journal of the Acoustical Society of America</i> , 2003 , 114, 1314-21	2.2	23
141	Freeform fabrication by controlled droplet deposition of powder filled melts. <i>Journal of Materials Science</i> , 2002 , 37, 3155-3161	4.3	60
140	Materials opportunities in layered manufacturing technology. <i>Journal of Materials Science</i> , 2002 , 37, 3091-3092	4.3	3
139	Manufacture of biomaterials by a novel printing process. <i>Journal of Materials Science: Materials in Medicine</i> , 2002 , 13, 1163-6	4.5	50
138	Characterisation of Collagen Scaffolds using X-ray Microtomography. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 521		
137	Thermal and Residual Stress Modelling of the Selective Laser Sintering Process. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 181		7
136	Development of PZT Suspensions for Ceramic Ink-Jet Printing. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 371		1
135	A Process to Make Collagen Scaffolds with an Artificial Circulatory System using Rapid Prototyping. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 758, 531		2
134	Residual stress and subsurface damage in machined alumina and alumina/silicon carbide nanocomposite ceramics. <i>Acta Materialia</i> , 2001 , 49, 507-517	8.4	56
133	Ink-Jet Printing of Wax-Based Alumina Suspensions. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 2514-2520	3.8	179

132	Rapid Prototyping of Ceramic Casting Cores for Investment Casting. <i>Key Engineering Materials</i> , 2001 , 206-213, 297-300	0.4	5
131	Accurate determination of Youngß modulus and Poissonß ratio of thin films by a combination of acoustic microscopy and nanoindentation. <i>Thin Solid Films</i> , 2001 , 398-399, 299-305	2.2	58
130	Analysis of Drop-On-Demand Ink Jet Print Head for Rapid Prototyping. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 698, 451		
129	Direct Ink Jet Printing of Alumina Components. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 698, 441		1
128	Accurate Determination of the Elastic properties of Near Surface Regions and Thin Films Using Nanoindentation and Acoustic Microscopy. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 695, 1		
127	Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 625, 117		132
126	Freeform Fabrication of Ceramics by Hot-Melt Ink-Jet Printing. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 625, 195		12
125	Matrix flow and densification during the consolidation of matrix coated fibres. <i>Acta Materialia</i> , 2000 , 48, 1247-1258	8.4	27
124	The Internet Microscope. Materials Research Society Symposia Proceedings, 2000, 632, 1		
123	Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation. Materials Research Society Symposia Proceedings, 2000, 624, 65		E1
	Materials Research Society Symposia Proceedings, 2000 , 024, 03		54
122	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76		2
122	Mechanical properties of pressureless sintered alumina containing alumina platelets. Advances in	3	
	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76 High-temperature neutron reflectometry of liquid metal-ceramic interfaces. <i>Journal Physics D:</i>	3 8.4	2
121	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76 High-temperature neutron reflectometry of liquid metal-ceramic interfaces. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, 2319-2326 Fracture of metal/ceramic laminates Transition from single to multiple cracking. <i>Acta Materialia</i> ,		2
121	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76 High-temperature neutron reflectometry of liquid metal-ceramic interfaces. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, 2319-2326 Fracture of metal/ceramic laminates Transition from single to multiple cracking. <i>Acta Materialia</i> , 1999 , 47, 529-543 Fracture of metal/ceramic laminates Crack growth resistance and toughness. <i>Acta Materialia</i> ,	8.4	2 4 60 60
121 120 119	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76 High-temperature neutron reflectometry of liquid metal-ceramic interfaces. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, 2319-2326 Fracture of metal/ceramic laminates II Transition from single to multiple cracking. <i>Acta Materialia</i> , 1999 , 47, 529-543 Fracture of metal/ceramic laminates II. Crack growth resistance and toughness. <i>Acta Materialia</i> , 1999 , 47, 545-563	8.4 8.4 1- d 664	2 4 60
121 120 119 118	Mechanical properties of pressureless sintered alumina containing alumina platelets. <i>Advances in Applied Ceramics</i> , 1999 , 98, 72-76 High-temperature neutron reflectometry of liquid metal-ceramic interfaces. <i>Journal Physics D: Applied Physics</i> , 1999 , 32, 2319-2326 Fracture of metal/ceramic laminates Transition from single to multiple cracking. <i>Acta Materialia</i> , 1999 , 47, 529-543 Fracture of metal/ceramic laminates Crack growth resistance and toughness. <i>Acta Materialia</i> , 1999 , 47, 545-563 Fabrication of reaction-bonded Cr2O3 ceramics. <i>Journal of the European Ceramic Society</i> , 1999 , 19, 165	8.4 8.4 1 . 1664	2 4 60 60

114	Crack Healing in an Alumina/Silicon Carbide Nanocomposite After Grinding and Annealing. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 581, 327		3
113	Stiffness of particulate reinforced metal matrix composites with damaged reinforcements. <i>Materials Science and Technology</i> , 1999 , 15, 827-832	1.5	15
112	Processing and microstructural characterisation of RBSiC-TaSi2 composites. <i>Journal of Materials Science</i> , 1998 , 33, 5557-5568	4.3	9
111	A finite element model for consolidation of vacuum plasma spray-formed metal matrix composites. <i>Acta Materialia</i> , 1998 , 46, 4339-4350	8.4	9
110	Stabilisation of TiBx-Coated SiC Fibres by Nitridation. <i>Scripta Materialia</i> , 1998 , 38, 1629-1634	5.6	4
109	Neutron reflection studies of titanium segregation to metalleramic interfaces. <i>Physica B: Condensed Matter</i> , 1998 , 248, 304-309	2.8	8
108	High temperature neutron reflection spectroscopy of liquid metal/ceramic interfaces. <i>Physica B: Condensed Matter</i> , 1998 , 248, 316-321	2.8	5
107	Wetting of silicon carbide by chromium containing alloys. <i>Acta Materialia</i> , 1998 , 46, 3491-3499	8.4	30
106	The strength of Al2O3/SiC nanocomposites after grinding and annealing. <i>Acta Materialia</i> , 1998 , 46, 383	398 3 β4	8 79
105	Characterisation of liquid metal/solid ceramic interfaces by neutron reflection. <i>Acta Materialia</i> , 1998 , 46, 2387-2392	8.4	6
104	Ceramic nanocomposites: mechanical properties. <i>Current Opinion in Solid State and Materials Science</i> , 1998 , 3, 490-495	12	29
103	Direct Inkjet Deposition of Ceramic Green Bodies: II - Jet Behaviour and Deposit Formation. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 542, 147		13
102	Direct Ink-Jet Deposition of Ceramic Green Bodies: I - Formulation of Build Materials. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 542, 141		8
101	Diffusion bonded Mokum[Gane decorative metal laminates. <i>Materials Science and Technology</i> , 1998 , 14, 510-517	1.5	3
100	Model for consolidation of Ti-6AI-4V/SiC fibre composite from plasma sprayed monotape. <i>Materials Science and Technology</i> , 1998 , 14, 933-938	1.5	1
99	Characterization of Alumina/Silicon Carbide Ceramic Nanocomposites 1998, 551-558		
98	Model for consolidation of Ti-6AI-4V/SiC fibre composite from plasma sprayed monotape. <i>Materials Science and Technology</i> , 1998 , 14, 933-938	1.5	1
97	Grain growth and texture changes in a Ni foil during diffusion bonding to ZrO2. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1997 , 76, 289-30)5	4

96	Texture change in Ni and Cu foils on diffusion bonding to zirconia. Scripta Materialia, 1997, 36, 1-6	5.6	8
95	Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite. <i>Acta Materialia</i> , 1997 , 45, 41-49	8.4	17
94	Acoustic emission from a SiC reinforced Al-2618 metal matrix composite during straining. <i>Scripta Materialia</i> , 1997 , 37, 1045-1052	5.6	4
93	The characterization of metal/ceramic interfaces using specular neutron reflection. <i>Acta Materialia</i> , 1997 , 45, 273-279	8.4	7
92	Surface mechanical properties of alumina matrix nanocomposites. <i>Acta Materialia</i> , 1997 , 45, 3963-3973	8.4	54
91	Wetting of titanium nitride and titanium carbide by liquid metals. <i>Acta Materialia</i> , 1996 , 44, 307-314	8.4	109
90	Silicon carbide particle size effects in alumina-based nanocomposites. <i>Acta Materialia</i> , 1996 , 44, 4543-4.	5 82 4	104
89	Characterization of microstructural damage during plastic strain of a particulate-reinforced metal matrix composite at elevated temperature. <i>Journal of Materials Science</i> , 1996 , 31, 297-303	4.3	17
88	The formation of TiC/Al2O3 microstructures by a self-propagating high-temperature synthesis reaction. <i>Journal of Materials Science</i> , 1996 , 31, 3791-3803	4.3	33
87	Modelling Consolidation of Ti-6Al-4V / SiC Matrix-Coated Fibre Metal Matrix Composites. <i>Key Engineering Materials</i> , 1996 , 127-131, 351-358	0.4	6
86	Damage Nucleation and Growth in Particle Reinforced Aluminium Matrix Composites. <i>Key Engineering Materials</i> , 1996 , 127-131, 945-952	0.4	5
85	Faceted Voids and Grain Orientation at Solid State Diffusion Bonded Interfaces between Cu and Single Crystal Cubic ZrO2. <i>Materials Science Forum</i> , 1996 , 207-209, 253-256	0.4	
84	The wetting of silicon nitride by chromium-containing alloys. <i>Journal of Materials Science</i> , 1995 , 30, 591	5 ₄ 5922	? 11
83	Liquid phase bonding of siliconized silicon carbide. <i>Journal of Materials Science</i> , 1995 , 30, 6119-6135	4.3	3
82	Analysis of neutron diffraction peak broadening caused by internal stresses in composite materials. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 354, 139-144	1.2	5
81	The deformation characteristics of SiC particulate-reinforced aluminium alloy 6061. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1995 , 197, 11-18	5.3	14
80	Solid-state fabrication and interfaces of fibre reinforced metal matrix composites. <i>Progress in Materials Science</i> , 1995 , 39, 411-495	42.2	71
79	Effect of TiB2, TiC and TiN protective coatings on tensile strength and fracture behaviour of SiC monofilament fibres. <i>Composites</i> , 1995 , 26, 531-539		24

78	Wetting behaviour in the Al-Si/SiC system: interface reactions and solubility effects. <i>Acta Metallurgica Et Materialia</i> , 1995 , 43, 3061-3073		112
77	Finite-difference modelling of self-propagating high-temperature synthesis of materials. <i>Acta Metallurgica Et Materialia</i> , 1995 , 43, 3903-3913		18
76	Development of a micro-droplet technique for wettability studies: Application to the Al-Si/SiC system. <i>Scripta Metallurgica Et Materialia</i> , 1995 , 33, 837-842		5
75	Microstructure and fracture behaviour of particle-reinforced metalEnatrix composites. <i>Journal of Microscopy</i> , 1995 , 177, 357-368	1.9	6
74	X-ray microtomographic studies of metal matrix composites using laboratory X-ray sources. <i>Journal of Microscopy</i> , 1995 , 177, 399-406	1.9	22
73	The CVD of Ceramic Protective Coatings on SiC Monofilaments for Use in Titanium Based Composites. <i>Materials and Manufacturing Processes</i> , 1994 , 9, 885-900	4.1	2
72	In Situ HREM Observation of the Oxidation of Nickel Thin Foils. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 357, 225		
71	Differential thermal analysis of ignition temperatures in a self-propagating high-temperature synthesis reaction. <i>Journal of Thermal Analysis</i> , 1994 , 42, 713-719		8
70	In situ scanning electron microscope studies of fracture in particulate-reinforced metal-matrix composites. <i>Journal of Materials Science</i> , 1994 , 29, 5615-5624	4.3	19
69	Evaluation of the efficiency of TiB2 and TiC as protective coatings for SiC monofilament in titanium-based composites. <i>Journal of Materials Science</i> , 1994 , 29, 3774-3780	4.3	31
68	Characterization of glass-ceramic to metal bonds. <i>Journal of Materials Science</i> , 1994 , 29, 4436-4446	4.3	4
67	Uniaxial creep of long fibre reinforced metal matrix composites. <i>Composites Part B: Engineering</i> , 1994 , 4, 1241-1255		7
66	Alumina/Aluminum Composites Formed by the Directed Oxidation of Aluminum Using Magnesia as a Surface Dopant. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1761-1770	3.8	21
65	Alumina/Aluminum Composites Formed by the Directed Oxidation of Aluminum Using Sodium Hydroxide as a Surface Dopant. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1771-1776	3.8	16
64	An analysis of thermal residual stresses in Ti-6-4 alloy reinforced with SiC and Al2O3 fibres. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 1525-1534		45
63	Theoretical model for solid-state consolidation of long-fibre reinforced metal-matrix composites. <i>Acta Metallurgica Et Materialia</i> , 1994 , 42, 461-473		17
62	The effect of temporary hydrogenation on the processing and interface of titanium composites. <i>Composites</i> , 1994 , 25, 881-886		10
61	Interface microstructures in Ti-based composites using TiB2/C-coated and uncoated SiCf after short-term thermal exposure. <i>Composites</i> , 1994 , 25, 887-890		16

60	Analysis of interfacial defects in solid-state consolidated composites. <i>Composites</i> , 1994 , 25, 563-569		5
59	Chemistry effects on interface microstructure and reaction in titanium-based composites. <i>Composites</i> , 1994 , 25, 630-636		10
58	Interfaces in Ti3Al composites reinforced with sigma SiC fibres. <i>Scripta Metallurgica Et Materialia</i> , 1994 , 30, 89-94		16
57	Nanomechanical Response of Materials and Thin Film Systems: Finite Element Simulation. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 356, 681		2
56	Acoustic emission from particulate-reinforced metal matrix composites. <i>Acta Metallurgica Et Materialia</i> , 1993 , 41, 1431-1445		103
55	Fibre uniformity and cavitation during the consolidation of metal-matrix composite via fibre-mat and matrix-foil diffusion bonding. <i>Acta Metallurgica Et Materialia</i> , 1993 , 41, 3257-3266		12
54	Damage assessment in particle-reinforced metal matrix composites using x-ray microtomography. <i>Scripta Metallurgica Et Materialia</i> , 1993 , 29, 1457-1462		23
53	Microstructural characterization in diffusion-bonded SiC/TiBAlBV composites. <i>Journal of Microscopy</i> , 1993 , 169, 269-277	1.9	18
52	Comparison of interfaces in Ti composites reinforced with uncoated and TiB2/C-coated SiC fibres. <i>Journal of Microscopy</i> , 1993 , 169, 279-287	1.9	28
51	The compatibility of TiB2 protective coatings with SiC fibre and Ti-6Al-4V. <i>Journal of Microscopy</i> , 1993 , 169, 289-295	1.9	15
50	Creep and Thermal Cycling 1993 , 191-214		20
49	Fracture Behavior 1993 , 251-268		5
48	Al2O3/Al composites formed by the directed oxidation of an Al?Mg?Zn alloy. <i>Journal of the European Ceramic Society</i> , 1993 , 12, 185-195	6	3
47	Adhesion testing of glass-ceramic thick films on metal substrates. <i>Journal of Materials Science</i> , 1993 , 28, 2989-2998	4.3	19
46	Diffusion bonding of a nickel (chromium) alloy to zirconia: Mechanical properties and interface microstructures. <i>Journal of Materials Science</i> , 1993 , 28, 4366-4374	4.3	20
45	Diffusion Bonds between a Stainless Steel and Zirconia. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 232-234	3.8	6
44	Microstructure and fracture behaviour of SiCp/Al-2618 metal matrix composite. <i>European Physical Journal Special Topics</i> , 1993 , 03, C7-1861-C7-1866		2
43	Diffusion bonding of nickel and zirconia: Mechanical properties and interfacial microstructures. <i>Journal of Materials Research</i> , 1992 , 7, 1480-1488	2.5	23

42	Metal-ceramic interfaces: Sources and sinks for mass transfer. <i>Acta Metallurgica Et Materialia</i> , 1992 , 40, S53-S58	7
41	Dynamic recrystallisation: The steady state grain size. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 27, 1581-1585	67
40	Palladium-zirconia diffusion bonds: Mechanical properties and interface reactions. <i>Acta Metallurgica Et Materialia</i> , 1992 , 40, 925-938	13
39	In Situ Measurement of the Elastic Moduli of Glass-Ceramic Thick Films. <i>Journal of the American Ceramic Society</i> , 1992 , 75, 1284-1286	3
38	Acoustic Emissions During Indentation Tests. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 239, 361	18
37	The CVD of Ceramic Protective Coatings on SiC Monofilaments. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 250, 257	2
36	The behaviour of metal matrix composites during temperature cycling. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 1991, 135, 213-216	11
35	The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Materials Science & Description of the fractural Materials: Properties, Microstructure and Processing 5.3, 1991, 135, 221-224	85
34	TEM study of silicon carbide whisker microstructures. <i>Journal of Materials Science</i> , 1991 , 26, 6207-6217 4.3	28
33	The dependence of grain size on stress during dynamic recrystallisation. <i>Acta Metallurgica Et Materialia</i> , 1991 , 39, 955-962	307
33 32		307
	Materialia, 1991 , 39, 955-962 The influence of microstructure on internal stress superplasticity in polycrystalline zinc. <i>Scripta</i>	
32	Materialia, 1991, 39, 955-962 The influence of microstructure on internal stress superplasticity in polycrystalline zinc. Scripta Metallurgica Et Materialia, 1991, 25, 467-472	13
32	Materialia, 1991, 39, 955-962 The influence of microstructure on internal stress superplasticity in polycrystalline zinc. Scripta Metallurgica Et Materialia, 1991, 25, 467-472 Interfaces in Metal/Ceramic Diffusion Bonds 1991, 224-231 THE INFLUENCE OF MAGNESIUM SEGREGATION ON THE FRACTURE OF SILICON CARBIDE	13
32 31 30	Materialia, 1991, 39, 955-962 The influence of microstructure on internal stress superplasticity in polycrystalline zinc. Scripta Metallurgica Et Materialia, 1991, 25, 467-472 Interfaces in Metal/Ceramic Diffusion Bonds 1991, 224-231 THE INFLUENCE OF MAGNESIUM SEGREGATION ON THE FRACTURE OF SILICON CARBIDE PARTICLE-REINFORCED ALUMINIUM METAL MATRIX COMPOSITES 1991, 175-178 Compressive Stresses, Buckling And Spalling Of Tungsten Lpd Films. Materials Research Society	13
32 31 30 29	Materialia, 1991, 39, 955-962 The influence of microstructure on internal stress superplasticity in polycrystalline zinc. Scripta Metallurgica Et Materialia, 1991, 25, 467-472 Interfaces in Metal/Ceramic Diffusion Bonds 1991, 224-231 THE INFLUENCE OF MAGNESIUM SEGREGATION ON THE FRACTURE OF SILICON CARBIDE PARTICLE-REINFORCED ALUMINIUM METAL MATRIX COMPOSITES 1991, 175-178 Compressive Stresses, Buckling And Spalling Of Tungsten Lpd Films. Materials Research Society Symposia Proceedings, 1990, 188, 251 The Mechanism of Internal Stress Superplasticity. Materials Research Society Symposia Proceedings,	13 3 2
32 31 30 29 28	The influence of microstructure on internal stress superplasticity in polycrystalline zinc. Scripta Metallurgica Et Materialia, 1991, 25, 467-472 Interfaces in Metal/Ceramic Diffusion Bonds 1991, 224-231 THE INFLUENCE OF MAGNESIUM SEGREGATION ON THE FRACTURE OF SILICON CARBIDE PARTICLE-REINFORCED ALUMINIUM METAL MATRIX COMPOSITES 1991, 175-178 Compressive Stresses, Buckling And Spalling Of Tungsten Lpd Films. Materials Research Society Symposia Proceedings, 1990, 188, 251 The Mechanism of Internal Stress Superplasticity. Materials Research Society Symposia Proceedings, 1990, 196, 115	13 3 2

THE FORMATION OF METAL/CERAMIC INTERFACES BY DIFFUSION BONDING **1990**, 161-167

23	The role of enhanced matrix dislocation density in strengthening metal matrix composites. <i>Scripta Metallurgica</i> , 1988 , 22, 529-532		40
22	Strain rate dependence of failure in 2124 Al/SiC whisker composite. <i>Scripta Metallurgica</i> , 1988 , 22, 601-600	5	28
21	On dynamic recrystallisation. <i>Scripta Metallurgica</i> , 1987 , 21, 879-884		221
20	A Microstructural model for primary creep. <i>Acta Metallurgica</i> , 1987 , 35, 1349-1353		46
19	The Influence of Surface Roughness on Interface Formation in Metal/Ceramic Diffusion Bonds 1987 , 319-328		5
18	Internal stress superplasticity in metal matrix composites. Scripta Metallurgica, 1985, 19, 703-707		20
17	Comments on: A rational method for calculating mechanism maps. <i>Scripta Metallurgica</i> , 1985 , 19, 1013-10	14	
16	Diffusion bonding: development of theoretical model. <i>Metal Science</i> , 1984 , 18, 427-431		85
15	Diffusion bonds in copper. <i>Journal of Materials Science</i> , 1984 , 19, 3140-3148	3	31
14	Diffusion bonds in iron and a low-alloy steel. <i>Journal of Materials Science</i> , 1984 , 19, 3149-3158 4.	3	12
13	Power-laws, and the A?n correlation in creep. <i>Scripta Metallurgica</i> , 1984 , 18, 1079-1084		21
12	Monotectic microstructure at high growth rates. <i>Scripta Metallurgica</i> , 1984 , 18, 169-172		11
11	Non-destructive testing and acoustic microscopy of diffusion bonds. <i>Journal of Materials Science</i> , 1983 , 18, 2345-2353	3	32
10	Temperature gradient and growth velocity effects on the irregular monotectic structure. <i>Journal of Crystal Growth</i> , 1983 , 65, 280-285	6	9
9	A criterion for the determination of monotectic structure. <i>Acta Metallurgica</i> , 1983 , 31, 1123-1130		97
8	Theoretical model for diffusion bonding. <i>Metal Science</i> , 1982 , 16, 49-56		164
7	Advanced alloys and metal/ceramic composites from lunar source materials. <i>Acta Astronautica</i> , 2.	9	1

6	Joining methods in space: A theoretical model for diffusion bonding. <i>Acta Astronautica</i> , 1980 , 7, 685-69	182.9	11
5	Estrogen mediates acute elastic fibre homeostasis in skin		1
4	When the Drop Hits the Substrate113-139		
3	Bioprinting, Inkjet Deposition1		
2	Combined Nanoindentation and Acoustic Determination of the Elastic Properties of Float Glass Surface. <i>Ceramic Transactions</i> ,93-105	0.1	
1	Ductile Deformation in Alumind/Silicon Carbide Nanocomposites. <i>Ceramic Engineering and Science</i> Proceedings 155-164	0.1	