## Marta Mazurkiewicz-Pawlicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3602662/publications.pdf

Version: 2024-02-01



Marta

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 145-154.                                  | 1.7  | 1,297     |
| 2  | Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon, 2012, 50, 3535-3541.                                             | 10.3 | 260       |
| 3  | Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Physica<br>Status Solidi (B): Basic Research, 2015, 252, 1860-1867.                                                       | 1.5  | 153       |
| 4  | Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.<br>Nanoscale Research Letters, 2018, 13, 116.                                                                  | 5.7  | 129       |
| 5  | Synthesis of palladium nanoparticles decorated helical carbon nanofiber as highly active anodic catalyst for direct formic acid fuel cells. Electrochimica Acta, 2012, 63, 323-328.                               | 5.2  | 50        |
| 6  | Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2-C materials. Applied Catalysis B:<br>Environmental, 2015, 163, 167-178.                                                                    | 20.2 | 43        |
| 7  | Deactivation resistant Pd–ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic<br>acid fuel cells. International Journal of Hydrogen Energy, 2015, 40, 16724-16733.                            | 7.1  | 39        |
| 8  | Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Applied Surface Science, 2016, 387, 929-937.                                      | 6.1  | 39        |
| 9  | Preparation of graphene oxide and characterisation using electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 193, 92-99.                                                         | 1.7  | 38        |
| 10 | Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range. Nanotechnology, 2015, 26, 495101.                                                       | 2.6  | 30        |
| 11 | A simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells. Applied Surface Science, 2019, 476, 806-814.                                      | 6.1  | 29        |
| 12 | Molybdenum disulfide-based hybrid materials as new types of oil additives with enhanced tribological and rheological properties. Tribology International, 2021, 160, 106999.                                      | 5.9  | 29        |
| 13 | Graphene Oxide with Controlled Content of Oxygen Groups as a Filler for Polymer Composites Used for Infrared Radiation Shielding. Nanomaterials, 2020, 10, 32.                                                    | 4.1  | 26        |
| 14 | Noncovalent Porphyrin–Graphene Oxide Nanohybrids: The pH-Dependent Behavior. Journal of Physical<br>Chemistry C, 2019, 123, 3368-3380.                                                                            | 3.1  | 25        |
| 15 | Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Scientific Reports, 2021, 11, 7977.                               | 3.3  | 25        |
| 16 | Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells. Applied Surface<br>Science, 2016, 388, 645-652.                                                                            | 6.1  | 24        |
| 17 | New polyacrylate-based lead(II) ion-selective electrodes. Mikrochimica Acta, 2009, 164, 293-297                                                                                                                   | 5.0  | 21        |
| 18 | Effect of the carbon support on MoS2 hybrid nanostructures prepared by an impinging jet reactor for<br>hydrogen evolution reaction catalysis. Journal of Environmental Chemical Engineering, 2022, 10,<br>108038. | 6.7  | 20        |

Marta

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cationic Porphyrinâ€Graphene Oxide Hybrid: Donorâ€Acceptor Composite for Efficient Photoinduced<br>Electron Transfer. ChemPhysChem, 2019, 20, 1054-1066.                                                                                          | 2.1  | 19        |
| 20 | Microstructure and nanomechanical properties of single stalks from diatom <i>Didymosphenia<br/>geminata</i> and their change due to adsorption of selected metal ions. Journal of Phycology, 2017, 53,<br>880-888.                                | 2.3  | 17        |
| 21 | Pd/MWCNTs catalytic activity in the formic acid electrooxidation dependent on catalyst surface treatment. Physica Status Solidi (B): Basic Research, 2011, 248, 2516-2519.                                                                        | 1.5  | 15        |
| 22 | Directly-thiolated graphene based electrochemical sensor for Hg(II) ion. Electrochimica Acta, 2019, 305, 329-337.                                                                                                                                 | 5.2  | 15        |
| 23 | Sulfonated Pentablock Copolymer Membranes and Graphene Oxide Addition for Efficient Removal of<br>Metal Ions from Water. Nanomaterials, 2020, 10, 1157.                                                                                           | 4.1  | 14        |
| 24 | Production and Properties of Molybdenum Disulfide/Graphene Oxide Hybrid Nanostructures for Catalytic Applications. Nanomaterials, 2020, 10, 1865.                                                                                                 | 4.1  | 13        |
| 25 | Influence of Fe doping on magnetic properties of ZrO2 nanocrystals. Journal of Alloys and Compounds, 2015, 632, 609-616.                                                                                                                          | 5.5  | 11        |
| 26 | A high stability AuPd-ZrO 2 -multiwall carbon nanotubes supported-catalyst in a formic acid electro-oxidation reaction. Applied Surface Science, 2018, 451, 289-297.                                                                              | 6.1  | 9         |
| 27 | Studies on influence of polymer modifiers for fluorescent nanocrystals' cytotoxicity. Journal of<br>Pharmaceutical and Biomedical Analysis, 2016, 127, 193-201.                                                                                   | 2.8  | 7         |
| 28 | Titania/chitosan–lignin nanocomposite as an efficient photocatalyst for the selective oxidation of<br>benzyl alcohol under UV and visible light. RSC Advances, 2021, 11, 34996-35010.                                                             | 3.6  | 7         |
| 29 | Well-defined Graphene Oxide as a Potential Component in Lung Cancer Therapy. Current Cancer Drug<br>Targets, 2020, 20, 47-58.                                                                                                                     | 1.6  | 5         |
| 30 | Direct support mixture painting, using Pd(0) organo-metallic compounds – an easy and<br>environmentally sound approach to combine decoration and electrode preparation for fuel cells.<br>Journal of Materials Chemistry A, 2014, 2, 20973-20979. | 10.3 | 3         |
| 31 | Cytotoxic properties of graphene derivatives depending on origin and type of cell line. Journal of Materials Research, 2020, 35, 2385-2395.                                                                                                       | 2.6  | 3         |
| 32 | Synthesis of graphene foams and their sorption properties of n-hexane. Journal of Porous Materials, 2021, 28, 1069-1079.                                                                                                                          | 2.6  | 2         |
| 33 | Corrosion Resistance of Copper Sheet after Laser Treatment. Solid State Phenomena, 0, 227, 167-170.                                                                                                                                               | 0.3  | 1         |