List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360261/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The revolution of PDMS microfluidics in cellular biology. Critical Reviews in Biotechnology, 2023, 43, 465-483.                                                                                                        | 9.0  | 24        |
| 2  | Nanostructured CeO2:Ag platform for electrochemically sensitive detection of nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126116.                                         | 4.7  | 20        |
| 3  | MoS <sub>2</sub> Nanosheet-Modified NiO Layers on a Conducting Carbon Paper for Glucose Sensing.<br>ACS Applied Nano Materials, 2021, 4, 6609-6619.                                                                    | 5.0  | 18        |
| 4  | Application of Functionalized Graphene Oxide Based Biosensors for Health Monitoring: Simple Graphene Derivatives to 3D Printed Platforms. Biosensors, 2021, 11, 384.                                                   | 4.7  | 29        |
| 5  | Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. Lab<br>on A Chip, 2020, 20, 760-777.                                                                                       | 6.0  | 36        |
| 6  | Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-octyl-thiophene) and<br>Molybdenum Disulfide Nanocomposite. ACS Applied Materials & Interfaces, 2019, 11, 29195-29206.                      | 8.0  | 66        |
| 7  | A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. Journal of Materials Chemistry B, 2019, 7, 3826-3839.                                                                        | 5.8  | 36        |
| 8  | An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker.<br>Biosensors and Bioelectronics, 2018, 107, 224-229.                                                                        | 10.1 | 64        |
| 9  | Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal. Lab on A Chip, 2018, 18, 803-817.                                                                           | 6.0  | 33        |
| 10 | Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sensors and Actuators B: Chemical, 2018, 259, 1090-1098.                                           | 7.8  | 57        |
| 11 | Integrated Microfluidic Flow-Through Microbial Fuel Cells. Scientific Reports, 2017, 7, 41208.                                                                                                                         | 3.3  | 26        |
| 12 | Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sensors and Actuators B: Chemical, 2017, 246, 202-214.                                     | 7.8  | 65        |
| 13 | Amperometric enzymatic determination of bisphenol A using an ITO electrode modified with reduced graphene oxide and Mn3O4 nanoparticles in a chitosan matrix. Mikrochimica Acta, 2017, 184, 1809-1816.                 | 5.0  | 35        |
| 14 | In situ integration of graphene foam–titanium nitride based bio-scaffolds and microfluidic structures<br>for soil nutrient sensors. Lab on A Chip, 2017, 17, 274-285.                                                  | 6.0  | 57        |
| 15 | Microporous Nanocomposite Enabled Microfluidic Biochip for Cardiac Biomarker Detection. ACS<br>Applied Materials & Interfaces, 2017, 9, 33576-33588.                                                                   | 8.0  | 63        |
| 16 | Graphene oxide–metal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7,<br>35982-35991.                                                                                                             | 3.6  | 30        |
| 17 | Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors and Actuators B: Chemical, 2017, 239, 1289-1299.                         | 7.8  | 115       |
| 18 | Microfluidic Immuno-Biochip for Detection of Breast Cancer Biomarkers Using Hierarchical<br>Composite of Porous Graphene and Titanium Dioxide Nanofibers. ACS Applied Materials &<br>Interfaces, 2016, 8, 20570-20582. | 8.0  | 157       |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensors. RSC Advances, 2016, 6, 67184-67195.                                              | 3.6  | 35        |
| 20 | Antibody conjugated metal nanoparticle decorated graphene sheets for a mycotoxin sensor. RSC Advances, 2016, 6, 56518-56526.                                                             | 3.6  | 21        |
| 21 | In-situ electrosynthesized nanostructured Mn3O4-polyaniline nanofibers- biointerface for endocrine disrupting chemical detection. Sensors and Actuators B: Chemical, 2016, 236, 781-793. | 7.8  | 19        |
| 22 | Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. Sensors and Actuators B: Chemical, 2016, 229, 82-91.                         | 7.8  | 37        |
| 23 | Green Synthesis of Graphene Based Biomaterial Using Fenugreek Seeds for Lipid Detection. ACS<br>Sustainable Chemistry and Engineering, 2016, 4, 871-880.                                 | 6.7  | 40        |
| 24 | A biofunctionalized quantum dot–nickel oxide nanorod based smart platform for lipid detection.<br>Journal of Materials Chemistry B, 2016, 4, 2706-2714.                                  | 5.8  | 22        |
| 25 | Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application. ACS Applied Materials<br>& Interfaces, 2016, 8, 7646-7656.                                                   | 8.0  | 50        |
| 26 | A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera<br>Detection. Scientific Reports, 2015, 5, 17384.                                             | 3.3  | 16        |
| 27 | Mediator-free biosensor using chitosan capped CdS quantum dots for detection of total cholesterol.<br>RSC Advances, 2015, 5, 45928-45934.                                                | 3.6  | 27        |
| 28 | Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale, 2015, 7, 7234-7245.                                          | 5.6  | 107       |
| 29 | Self assembled DC sputtered nanostructured rutile TiO 2 platform for bisphenol A detection.<br>Biosensors and Bioelectronics, 2015, 68, 633-641.                                         | 10.1 | 33        |
| 30 | Tyrosinase conjugated reduced graphene oxide based biointerface for bisphenol A sensor. Biosensors and Bioelectronics, 2015, 74, 644-651.                                                | 10.1 | 80        |
| 31 | A chitosan modified nickel oxide platform for biosensing applications. Journal of Materials Chemistry<br>B, 2015, 3, 6698-6708.                                                          | 5.8  | 37        |
| 32 | Protein Functionalized Carbon Nanotubes-based Smart Lab-on-a-Chip. ACS Applied Materials &<br>Interfaces, 2015, 7, 5837-5846.                                                            | 8.0  | 58        |
| 33 | Quantum dot-based microfluidic biosensor for cancer detection. Applied Physics Letters, 2015, 106, .                                                                                     | 3.3  | 25        |
| 34 | Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B <sub>1</sub><br>detection. RSC Advances, 2015, 5, 5406-5414.                                                 | 3.6  | 59        |
| 35 | Chitosan-Modified Carbon Nanotubes-Based Platform for Low-Density Lipoprotein Detection. Applied<br>Biochemistry and Biotechnology, 2014, 174, 926-935.                                  | 2.9  | 24        |
| 36 | Electrochemically Assembled Gold Nanostructures Platform: Electrochemistry, Kinetic Analysis, and Biomedical Application. Journal of Physical Chemistry C, 2014, 118, 6261-6271.         | 3.1  | 12        |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Lipid–Lipid Interactions in Aminated Reduced Graphene Oxide Interface for Biosensing Application.<br>Langmuir, 2014, 30, 4192-4201.                                             | 3.5  | 75        |
| 38 | Reduced graphene oxide–titania based platform for label-free biosensor. RSC Advances, 2014, 4,<br>60386-60396.                                                                  | 3.6  | 24        |
| 39 | Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO <sub>2</sub> Nanofiber Based<br>Interface for Biosensing. ACS Applied Materials & Interfaces, 2014, 6, 2516-2527. | 8.0  | 136       |
| 40 | A surface functionalized nanoporous titania integrated microfluidic biochip. Nanoscale, 2014, 6, 13958-13969.                                                                   | 5.6  | 31        |
| 41 | Graphene Oxide-Based Biosensor for Food Toxin Detection. Applied Biochemistry and Biotechnology, 2014, 174, 960-970.                                                            | 2.9  | 60        |
| 42 | Protein–Conjugated Quantum Dots Interface: Binding Kinetics and Label-Free Lipid Detection.<br>Analytical Chemistry, 2014, 86, 1710-1718.                                       | 6.5  | 40        |
| 43 | Nanomaterial-Based Biosensors for Food Toxin Detection. Applied Biochemistry and Biotechnology, 2014, 174, 880-896.                                                             | 2.9  | 94        |
| 44 | Highly sensitive biofunctionalized nickel oxide nanowires for nanobiosensing applications. RSC Advances, 2013, 3, 16060.                                                        | 3.6  | 18        |
| 45 | Mediator-free microfluidics biosensor based on titania–zirconia nanocomposite for urea detection.<br>RSC Advances, 2013, 3, 228-235.                                            | 3.6  | 64        |
| 46 | Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application. Biosensors and Bioelectronics, 2013, 50, 406-413.                            | 10.1 | 19        |
| 47 | Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 2013, 5, 3043.                                                               | 5.6  | 158       |
| 48 | A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale, 2013, 5, 2883.                                                                    | 5.6  | 63        |
| 49 | Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 2013, 185, 258-264.                                       | 7.8  | 138       |
| 50 | Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application.<br>Biosensors and Bioelectronics, 2013, 45, 181-188.                                | 10.1 | 33        |
| 51 | Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Analytica Chimica Acta, 2013, 777, 63-71.                     | 5.4  | 43        |
| 52 | Microfluidicâ€integrated biosensors: Prospects for pointâ€ofâ€care diagnostics. Biotechnology Journal,<br>2013, 8, 1267-1279.                                                   | 3.5  | 147       |
| 53 | Nanostructured magnesium oxide biosensing platform for cholera detection. Applied Physics Letters, 2013, 102, 144106.                                                           | 3.3  | 13        |
| 54 | Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Applied Physics Letters, 2012, 101, 084105.                      | 3.3  | 46        |

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electrophoretically deposited CdS quantum dots based electrode for biosensor application. Journal of Materials Chemistry, 2012, 22, 4970.       | 6.7 | 40        |
| 56 | A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale, 2011, 3, 2971.                                              | 5.6 | 38        |
| 57 | Polyaniline–Carboxymethyl Cellulose Nanocomposite for Cholesterol Detection. Journal of<br>Nanoscience and Nanotechnology, 2010, 10, 6479-6488. | 0.9 | 29        |
| 58 | Nanostructured zinc oxide film for urea sensor. Materials Letters, 2009, 63, 2473-2475.                                                         | 2.6 | 100       |