Aidin Lak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embracing Defects and Disorder in Magnetic Nanoparticles. Advanced Science, 2021, 8, 2002682.	11.2	45
2	Molecular structure, DNA binding mode, photophysical properties and recommendations for use of SYBR Gold. Nucleic Acids Research, 2021, 49, 5143-5158.	14.5	31
3	Point-of-need detection of pathogen-specific nucleic acid targets using magnetic particle spectroscopy. Biosensors and Bioelectronics, 2021, 192, 113536.	10.1	12
4	The Dissociation Rate of Acetylacetonate Ligands Governs the Size of Ferrimagnetic Zinc Ferrite Nanocubes. ACS Applied Materials & Interfaces, 2020, 12, 217-226.	8.0	9
5	Photo-induced copper mediated copolymerization of activated-ester methacrylate polymers and their use as reactive precursors to prepare multi-dentate ligands for the water transfer of inorganic nanoparticles. Polymer Chemistry, 2020, 11, 2969-2985.	3.9	6
6	Fe ²⁺ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. Nano Letters, 2018, 18, 6856-6866.	9.1	53
7	Manipulating the morphology of the nano oxide domain in AuCu–iron oxide dumbbell-like nanocomposites as a tool to modify magnetic properties. RSC Advances, 2018, 8, 22411-22421.	3.6	1
8	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. Journal of Colloid and Interface Science, 2017, 502, 201-209.	9.4	35
9	Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance. ACS Nano, 2017, 11, 12121-12133.	14.6	106
10	Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals. Journal of the American Chemical Society, 2016, 138, 7082-7090.	13.7	67
11	Dumbbell-like Au _{0.5} Cu _{0.5} @Fe ₃ O ₄ Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 28624-28632.	8.0	20
12	Facile transformation of FeO/Fe3O4 core-shell nanocubes to Fe3O4 via magnetic stimulation. Scientific Reports, 2016, 6, 33295.	3.3	37
13	Magnetorelaxometry of few Fe3O4 nanoparticles at 77 K employing a self-compensated SQUID magnetometer. Journal of Magnetism and Magnetic Materials, 2016, 408, 46-50.	2.3	4
14	Effective particle magnetic moment of multi-core particles. Journal of Magnetism and Magnetic Materials, 2015, 380, 221-226.	2.3	40
15	Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2015, 380, 140-143.	2.3	10
16	Dynamic Magnetic Properties of Optimized Magnetic Nanoparticles for Magnetic Particle Imaging. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	8
17	Protein detection with magnetic nanoparticles in a rotating magnetic field. Journal of Applied Physics, 2014, 115, .	2.5	33
18	Size dependent structural and magnetic properties of FeO–Fe3O4 nanoparticles. Nanoscale, 2013, 5, 12286.	5.6	103

Aidin Lak

#	Article	IF	CITATIONS
19	Highly stable monodisperse PEGylated iron oxide nanoparticle aqueous suspensions: a nontoxic tracer for homogeneous magnetic bioassays. Nanoscale, 2013, 5, 11447.	5.6	32
20	Size Distribution and Magnetization Optimization of Single-Core Iron Oxide Nanoparticles by Exploiting Design of Experiment Methodology. IEEE Transactions on Magnetics, 2013, 49, 201-207.	2.1	22
21	Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes. Materials Chemistry and Physics, 2012, 135, 206-211.	4.0	10
22	Photocatalytic activity of TiO2-capped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2012, 23, 361-369.	2.2	7
23	High-density array of Au nanowires coupled by plasmon modes. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 237105.	0.5	7
24	Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures. Applied Physics A: Materials Science and Processing, 2010, 99, 317-321.	2.3	35
25	Influence of Synthesis Parameters on Magnetization and Size of Iron Oxide Nanoparticles. , 2010, , .		2
26	Ultrasonic induced photoluminescence decay in sonochemically obtained cauliflower-like ZnO nanostructures with surface 1D nanoarrays. Ultrasonics Sonochemistry, 2009, 16, 11-14.	8.2	43
27	Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route. Journal of Alloys and Compounds, 2009, 469, 293-297.	5.5	82
28	Rapid formation of hydroxyapatite nanostrips via microwave irradiation. Journal of Alloys and Compounds, 2009, 469, 391-394.	5.5	61
29	3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. Journal of Alloys and Compounds, 2009, 473, 283-287.	5.5	40
30	Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures. Journal of Alloys and Compounds, 2009, 485, 616-620.	5.5	49
31	Self-assembled zinc oxide nanostructures via a rapid microwave-assisted route. Journal of Crystal Growth, 2008, 310, 3621-3625.	1.5	60
32	Selfâ€Assembly of Dandelionâ€Like Hydroxyapatite Nanostructures Via Hydrothermal Method. Journal of the American Ceramic Society, 2008, 91, 3292-3297.	3.8	86
33	Rapid Formation of Monoâ€Dispersed Hydroxyapatite Nanorods with Narrowâ€Size Distribution via Microwave Irradiation. Journal of the American Ceramic Society, 2008, 91, 3580-3584.	3.8	79
34	Boehmite nanopetals self assembled to form rosette-like nanostructures. Materials Letters, 2008, 62, 4184-4186.	2.6	17
35	Self-assembled dahlia-like cadmium hydrogen phosphate hydrate nanostructures as templates for cadmium hydroxyapatite hexagonal prisms. Journal of Crystal Growth, 2007, 309, 37-42.	1.5	2