
Carmen Claver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3601679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd nanoparticles for C–C coupling reactions. Chemical Society Reviews, 2011, 40, 4973.	38.1	744
2	A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. Journal of the American Chemical Society, 2004, 126, 1592-1593.	13.7	288
3	Phosphite-Containing Ligands for Asymmetric Catalysis. Chemical Reviews, 2011, 111, 2077-2118.	47.7	287
4	Ligands Derived from Carbohydrates for Asymmetric Catalysis. Chemical Reviews, 2004, 104, 3189-3216.	47.7	256
5	Highlights of Transition Metal atalyzed Asymmetric Hydrogenation of Imines. ChemCatChem, 2010, 2, 1346-1371.	3.7	251
6	Recent advances in enantioselective hydroformylation. Tetrahedron: Asymmetry, 1995, 6, 1453-1474.	1.8	241
7	Homogeneous catalysis with transition metal complexes containing sulfur ligands. Coordination Chemistry Reviews, 1999, 193-195, 73-145.	18.8	177
8	Recent advances in Rh-catalyzed asymmetric hydroformylation using phosphite ligands. Tetrahedron: Asymmetry, 2004, 15, 2113-2122.	1.8	177
9	Synthesis of 2-substituted-benzothiazoles by palladium-catalyzed intramolecular cyclization of o-bromophenylthioureas and o-bromophenylthioamides. Tetrahedron Letters, 2003, 44, 6073-6077.	1.4	172
10	Carbohydrate derivative ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2004, 248, 2165-2192.	18.8	170
11	New Phosphiteâ~'Oxazoline Ligands for Efficient Pd-Catalyzed Substitution Reactions. Journal of the American Chemical Society, 2005, 127, 3646-3647.	13.7	131
12	Chiral Diphosphites Derived fromD-Glucose: New Ligands for the Asymmetric Catalytic Hydroformylation of Vinyl Arenes. Chemistry - A European Journal, 2001, 7, 3086-3094.	3.3	127
13	Regioselective hydroformylation of cyclic vinyl and allyl ethers with rhodium catalysts. Crucial influence of the size of the phosphorus cocatalyst. Organometallics, 1992, 11, 3525-3533.	2.3	122
14	Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes. Dalton Transactions, 2010, 39, 11499.	3.3	118
15	Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Transactions, 2017, 46, 12381-12403.	3.3	117
16	C1 and C2-symmetric carbohydrate phosphorus ligands in asymmetric catalysis. Chemical Society Reviews, 2005, 34, 702.	38.1	115
17	Synthesis of a Dirhodium(I) Bisimidazolium Carbene Complex and Catalytic Activity toward Hydroformylation of Olefins. High-Pressure NMR Spectroscopy of the Catalyst under Catalytic Conditions. Organometallics, 2003, 22, 440-444.	2.3	111
18	Recent advances in the use of catalysts based on natural products for the conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2020, 22, 7665-7706.	9.0	110

#	Article	lF	CITATIONS
19	On the Mechanism of the Hydroxycarbonylation of Styrene with Palladium Systems. European Journal of Inorganic Chemistry, 2001, 2001, 2719.	2.0	106
20	Hydroxycarbonylation of styrene with palladium catalysts. Journal of Molecular Catalysis A, 2000, 161, 39-48.	4.8	104
21	Diphosphine and Dithiolate Rhodium Complexes:  Characterization of the Species under Hydroformylation Conditions. Organometallics, 1998, 17, 2543-2552.	2.3	97
22	Recent Progress in Asymmetric Catalysis Using Chiral Carbohydrateâ€Based Ligands. European Journal of Organic Chemistry, 2007, 2007, 4621-4634.	2.4	93
23	Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands. Tetrahedron: Asymmetry, 2010, 21, 1135-1146.	1.8	91
24	Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183, 154-171.	4.4	90
25	Synthesis and Coordination Chemistry of Novel Chiral P,S-Ligands with a Xylofuranose Backbone:Â Use in Asymmetric Hydroformylation and Hydrogenation. Organometallics, 2000, 19, 1488-1496.	2.3	86
26	Modular Furanoside Phosphite Ligands for Asymmetric Pd-Catalyzed Allylic Substitution. Journal of Organic Chemistry, 2001, 66, 8867-8871.	3.2	84
27	Insights into CO/Styrene Copolymerization by Using PdII Catalysts Containing Modular Pyridine–Imidazoline Ligands. Chemistry - A European Journal, 2004, 10, 3747-3760.	3.3	83
28	Pd-catalysed asymmetric mono- and bis-alkoxycarbonylation of vinylarenes. Dalton Transactions, 2008, , 853-860.	3.3	81
29	Preparation of a new clay-immobilized highly stable palladium catalyst and its efficient recyclability in the Heck reaction. New Journal of Chemistry, 2003, 27, 425-431.	2.8	79
30	Electronic Effect of Diphosphines on the Regioselectivity of the Palladium-Catalyzed Hydroesterification of Styrene. Organometallics, 2006, 25, 3102-3104.	2.3	78
31	Phosphine Ligands in the Palladium atalysed Methoxycarbonylation of Ethene: Insights into the Catalytic Cycle through an HPâ€NMR Spectroscopic Study. Chemistry - A European Journal, 2010, 16, 6919-6932.	3.3	74
32	Improved Sonogashira Cî—,C coupling through clay supported palladium complexes with tridentate pincer bis-carbene ligands. Tetrahedron Letters, 2003, 44, 6595-6599.	1.4	73
33	Tunable furanoside diphosphite ligands. A powerful approach in asymmetric catalysis. Dalton Transactions, 2003, , 2957-2963.	3.3	72
34	New Carbohydrate-Based Phosphite-Oxazoline Ligands as Highly Versatile Ligands for Palladium-Catalyzed Allylic Substitution Reactions. Advanced Synthesis and Catalysis, 2005, 347, 1943-1947.	4.3	72
35	Chiral Diphosphites Derived fromd-Glucose:Â New Highly Modular Ligands for the Asymmetric Catalytic Hydrogenation. Journal of Organic Chemistry, 2002, 67, 3796-3801.	3.2	69
36	An efficient method for the synthesis of enantiopure phosphine–imidazoline ligands: application to the Ir-catalyzed hydrogenation of imines. Tetrahedron: Asymmetry, 2004, 15, 3365-3373.	1.8	69

#	Article	IF	CITATIONS
37	Alternating and Nonâ€Alternating Pdâ€Catalysed Co―and Terpolymerisation of Carbon Monoxide and Alkenes. European Journal of Inorganic Chemistry, 2007, 2007, 2582-2593.	2.0	69
38	Asymmetric hydroformylation of styrene catalyzed by carbohydrate diphosphite-Rh(I) complexes. New Journal of Chemistry, 2002, 26, 827-833.	2.8	68
39	Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2459-2469.	4.3	68
40	Highly Enantioselective Rh-Catalyzed Hydrogenation Based on Phosphineâ^'Phosphite Ligands Derived from Carbohydrates. Journal of Organic Chemistry, 2001, 66, 8364-8369.	3.2	66
41	Ligand effects in the non-alternating CO–ethylene copolymerization by palladium(ii) catalysis. Dalton Transactions, 2007, , 5590.	3.3	66
42	Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation. Chemical Communications, 2008, , 2759.	4.1	65
43	Palladium-Diphosphite Catalysts for the Asymmetric Allylic Substitution Reactions. Journal of Organic Chemistry, 2005, 70, 3363-3368.	3.2	62
44	Iridium-Catalyzed Enantioselective Hydrogenation of Imines with Xylose Diphosphite and Diphosphinite Ligands. Advanced Synthesis and Catalysis, 2003, 345, 169-171.	4.3	60
45	Chiral Phosphite-oxazolines:  A New Class of Ligands for Asymmetric Heck Reactions. Organic Letters, 2005, 7, 5597-5599.	4.6	60
46	Recoverable chiral palladium–sulfonated diphosphine catalysts for the asymmetric hydrocarboxylation of vinyl arenes. Tetrahedron: Asymmetry, 1999, 10, 4463-4467.	1.8	59
47	High-Pressure Infrared Studies of Rhodium Complexes Containing Thiolate Bridge Ligands under Hydroformylation Conditions. Organometallics, 1999, 18, 2107-2115.	2.3	59
48	Novel diphosphite derived from d-gluco-furanose provides high regio- and enantioselectivity in Rh-catalysed hydroformylation of vinyl arenes. Chemical Communications, 2000, , 1607-1608.	4.1	59
49	Diphosphite ligands based on ribose backbone as suitable ligands in the hydrogenation and hydroformylation of prochiral olefins. Tetrahedron: Asymmetry, 2000, 11, 1097-1108.	1.8	58
50	Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions. Catalysis Science and Technology, 2015, 5, 310-319.	4.1	58
51	Cationic rhodium(I) organic complexes with nitrogen donors and their carbonylation products. Journal of Organometallic Chemistry, 1976, 105, 365-370.	1.8	57
52	Enantioselective copper-catalysed 1,4-addition of diethylzinc to cyclohexenone using chiral diphosphite ligands. Tetrahedron: Asymmetry, 1999, 10, 2007-2014.	1.8	57
53	Chiral Diphosphiteâ€Modified Rhodium(0) Nanoparticles: Catalyst Reservoir for Styrene Hydroformylation. European Journal of Inorganic Chemistry, 2008, 2008, 3460-3466.	2.0	54
54	Carbohydrateâ€Derived 1,3â€Diphosphite Ligands as Chiral Nanoparticle Stabilizers: Promising Catalytic Systems for Asymmetric Hydrogenation. ChemSusChem, 2009, 2, 769-779.	6.8	54

#	Article	IF	CITATIONS
55	Diphosphites as a promising new class of ligands in Pd-catalysed asymmetric allylic alkylation. Chemical Communications, 2001, , 1132-1133.	4.1	53
56	Regio- and Stereoselective Hydroformylation of Glucal Derivatives with Rhodium Catalysts. Organometallics, 1998, 17, 2857-2864.	2.3	52
57	Systematic Study of the Asymmetric Methoxycarbonylation of Styrene Catalyzed by Palladium Systems Containing Chiral Ferrocenyl Diphosphine Ligands. Helvetica Chimica Acta, 2006, 89, 1610-1622.	1.6	52
58	A new and efficient catalytic method for synthesizing isocyanates from carbamates. Tetrahedron Letters, 2002, 43, 1673-1676.	1.4	51
59	Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 2017, 53, 7894-7897.	4.1	51
60	Synthesis and hydroformylation reaction of dinuclear rhodium(I) complexes with mixed bridging ligands. X-Ray structure of [Rh2(µ-pz)(µ-SBut)(CO)2{P(OMe)3}2]. Journal of the Chemical Society Dalton Transactions, 1988, , 1523-1528.	1.1	50
61	Copper-catalysed asymmetric 1,4-addition of organometallic reagents to 2-cyclohexenone using novel phosphine-phosphite ligands. Tetrahedron: Asymmetry, 2000, 11, 3161-3166.	1.8	50
62	Chiral Phosphineâ^'Phosphite Ligands in the Highly Enantioselective Rhodium-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2001, 66, 7626-7631.	3.2	50
63	Highly Efficient Rhodium Catalysts for the Asymmetric Hydroformylation of Vinyl and Allyl Ethers using <i>C</i> ₁ â€Symmetrical Diphosphite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 463-477.	4.3	49
64	Iridium Complexes of Orthometalated Triaryl Phosphites:  Synthesis, Structure, Reactivity, and Use as Imine Hydrogenation Catalysts. Organometallics, 1996, 15, 3990-3997.	2.3	48
65	Asymmetric Hydroformylation. , 2006, , 35-64.		48
66	NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. Journal of Catalysis, 2017, 354, 113-127.	6.2	48
67	A phosphine-free Pd catalyst for the selective double carbonylation of aryl iodides. Chemical Communications, 2012, 48, 1695-1697.	4.1	46
68	Asymmetric hydroformylation of styrene using a rhodium catalyst with BDPP as the chiral ligand. Tetrahedron: Asymmetry, 1996, 7, 1829-1834.	1.8	45
69	Copper-catalysed asymmetric conjugate addition of organometallic reagents to enones using S,O-ligands with a xylofuranose backbone. Tetrahedron: Asymmetry, 2000, 11, 871-877.	1.8	45
70	New Pyridineâ^'Imidazoline Ligands for Palladium-Catalyzed Copolymerization of Carbon Monoxide and Styrene. European Journal of Inorganic Chemistry, 2001, 2001, 3009-3011.	2.0	45
71	Influence of Pyridine-Imidazoline Ligands on the Reactivity of Palladium-Methyl Complexes with Carbon Monoxide. Organometallics, 2002, 21, 5820-5829.	2.3	44
72	Modular Furanoside Diphosphite Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions: Scope and Limitations. Advanced Synthesis and Catalysis, 2005, 347, 1257-1266.	4.3	44

#	Article	IF	CITATIONS
73	First successful application of diphosphite ligands in the asymmetric hydroformylation of dihydrofurans. Chemical Communications, 2005, , 1221-1223.	4.1	44
74	Robust Zinc Complexes that Contain Pyrrolidineâ€Based Ligands as Recyclable Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem, 2016, 8, 234-243.	3.7	44
75	Asymmetric hydroformylation of styrene catalyzed by furanoside phosphine–phosphite–Rh(I) complexes. Tetrahedron: Asymmetry, 2002, 12, 3441-3445.	1.8	43
76	Rhodium-diphosphine catalysts for the hydroformylation of styrene: the influence of the excess of ligand and the chelate ring size on the reaction selectivity. Journal of Molecular Catalysis A, 1999, 143, 111-122.	4.8	42
77	In Quest of Factors That Control the Enantioselective Catalytic Markovnikov Hydroboration/Oxidation of Vinylarenes. Chemistry - A European Journal, 2004, 10, 6456-6467.	3.3	42
78	Tuning the Selectivity in the Hydrogenation of Aromatic Ketones Catalyzed by Similar Ruthenium and Rhodium Nanoparticles. ChemCatChem, 2014, 6, 3160-3168.	3.7	42
79	Selective hydroformylation with a recoverable dirhodium µ-thiolato complex. Journal of the Chemical Society Chemical Communications, 1989, , 1056-1057.	2.0	41
80	Low-pressure selective hydroformylation of 2,3- and 2,5-dihydrofuran with a rhodium catalyst. Unexpected influence of the auxiliary ligand tris(o-t-butylphenyl) phosphite. Journal of the Chemical Society Chemical Communications, 1990, , 600-601.	2.0	41
81	Chiral diphosphites derived from d-glucose in the copper-catalyzed conjugate addition of diethylzinc to cyclohexenone. Tetrahedron: Asymmetry, 2001, 12, 2895-2900.	1.8	41
82	Enhanced regioselectivity in palladium-catalysed asymmetric methoxycarbonylation of styrene using phosphetanes as chiral ligands. Inorganic Chemistry Communication, 2005, 8, 1113-1115.	3.9	41
83	Earlyâ^'Late Heterotetranuclear Complexes (TiRh3) with Bridging Sulfido Ligands:Â Ligand Replacement Reactions and Catalytic Activity in Hydroformylation of Olefins. Organometallics, 1999, 18, 3035-3044.	2.3	40
84	Mechanistic study of the hydroformylation of styrene catalyzed by the rhodium/BDPP system. Journal of Organometallic Chemistry, 2000, 608, 115-121.	1.8	40
85	Highly active and enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclohexenone using sugar derivative diphosphites. Tetrahedron: Asymmetry, 2000, 11, 4377-4383.	1.8	40
86	Chiral phosphite–phosphoroamidites: a new class of ligand for asymmetric catalytic hydrogenation. Chemical Communications, 2001, , 2702-2703.	4.1	40
87	On the Origin of Regio- and Stereoselectivity in the Rhodium-Catalyzed Vinylarenes Hydroboration Reaction. Journal of Organic Chemistry, 2004, 69, 2669-2680.	3.2	40
88	Rhodium-diphosphite catalysed hydroformylation of allylbenzene and propenylbenzene derivatives. Inorganica Chimica Acta, 2006, 359, 2973-2979.	2.4	40
89	Phosphine–phosphite, a new class of auxiliaries in highly active and enantioselective hydrogenation. Chemical Communications, 2000, , 2383-2384.	4.1	39
90	How To Turn the Catalytic Asymmetric Hydroboration Reaction of Vinylarenes into a Recyclable Process. Chemistry - A European Journal, 2003, 9, 191-200.	3.3	39

#	Article	IF	CITATIONS
91	First Chiral Phosphoroamidite-phosphite Ligands for Highly Enantioselective and Versatile Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Organic Letters, 2007, 9, 49-52.	4.6	39
92	Development of silica-supported frustrated Lewis pairs: highly active transition metal-free catalysts for the Z-selective reduction of alkynes. Catalysis Science and Technology, 2016, 6, 882-889.	4.1	39
93	Interplay between Cationic and Neutral Species in the Rhodium atalyzed Hydroaminomethylation Reaction. Chemistry - A European Journal, 2012, 18, 7128-7140.	3.3	38
94	Recyclable NHC Catalyst for the Development of a Generalized Approach to Continuous Buchwald–Hartwig Reaction and Workup. Organic Process Research and Development, 2016, 20, 551-557.	2.7	38
95	Chiral sulphonated phosphines. Part VII. Catalytic transfer-hydrogenation of unsaturated substrates with formates in the presence of water soluble complexes of rhodium. Journal of Molecular Catalysis, 1991, 68, L9-L12.	1.2	37
96	Regioselectivity in hydroxycarbonylation of styrene with Pd systems. The role of the counter anion. Inorganic Chemistry Communication, 2000, 3, 166-168.	3.9	36
97	Heterogenised iridium complexes for the asymmetric hydrogenation of imines. Tetrahedron: Asymmetry, 2000, 11, 1469-1476.	1.8	36
98	Furanoside thioether–phosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions. Tetrahedron: Asymmetry, 2005, 16, 959-963.	1.8	36
99	Pd-catalysed methoxycarbonylation of vinylarenes using chiral monodentate phosphetanes and phospholane as ligands. Effect of substrate substituents on enantioselectivity. Dalton Transactions, 2007, , 5524.	3.3	36
100	New hydroformylation rhodium catalysts with dithiolate chiral ligands. Journal of Molecular Catalysis, 1994, 94, 149-156.	1.2	35
101	Chiral furanoside phosphite–phosphoroamidites: new ligands for asymmetric catalytic hydroformylation. Tetrahedron: Asymmetry, 2001, 12, 2827-2834.	1.8	35
102	Asymmetric hydroformylation of styrene by rhodium(I) catalysts with chiral ligands containing sulfur donors. Journal of the Chemical Society Chemical Communications, 1993, , 1833-1834.	2.0	34
103	New dithiolate-bridged rhodium complexes. Journal of the Chemical Society Dalton Transactions, 1993, , 2689-2696.	1.1	34
104	Chiral S,S-donor ligands in palladium-catalysed allylic alkylation. Tetrahedron: Asymmetry, 2001, 12, 1469-1474.	1.8	34
105	Allylic Alkylations Catalyzed by Palladium Systems Containing Modular Chiral Dithioethers. A Structural Study of the Allylic Intermediates. Organometallics, 2005, 24, 3946-3956.	2.3	34
106	Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Applied Catalysis A: General, 2016, 513, 39-46.	4.3	34
107	Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO ₂ into Cyclic Carbonates. ChemCatChem, 2018, 10, 2792-2803.	3.7	34
108	<i>C</i> ₁ ‣ymmetric Diphosphite Ligands Derived from Carbohydrates: Influence of Structural Modifications on the Rhodiumâ€Catalyzed Asymmetric Hydroformylation of Styrene. European Journal of Organic Chemistry, 2009, 2009, 1191-1201.	2.4	33

#	Article	IF	CITATIONS
109	Chiral sulfonated phosphines VIII. Hydrogenation of dehydropeptides in a two-phase system. Journal of Organometallic Chemistry, 1992, 438, 213-216.	1.8	32
110	New catalysts for the alternating copolymerization of 4-tert-butylstyrene/CO. Journal of Organometallic Chemistry, 2001, 619, 287-292.	1.8	32
111	Tridentate chiral NPN ligands based on bis(oxazolines) and their use in Pd-catalyzed enantioselective allylic substitution in molecular and ionic liquids. Tetrahedron, 2011, 67, 5402-5408.	1.9	32
112	Catalytic activity of some fluorothiolate derivatives of rhodium(I). Crystal structure of [Rh(μ-SC6H4F)(CO)2]2. Journal of Organometallic Chemistry, 1990, 398, 177-186.	1.8	31
113	Functionalization of amines by â€~one pot–free solvent' reductive alkylation with a recyclable catalyst. Tetrahedron Letters, 2000, 41, 6583-6588.	1.4	31
114	Asymmetric hydroformylation. Catalysis By Metal Complexes, 2000, , 107-144.	0.6	31
115	C2-Symmetric Diphosphinite Ligands Derived from Carbohydrates. The Strong Influence of Remote Stereocenters on Asymmetric Rhodium-Catalyzed Hydrogenation. Journal of Organic Chemistry, 2004, 69, 7502-7510.	3.2	31
116	An unprecedented recyclable catalyst system for asymmetric hydroboration. Chemical Communications, 2001, , 1808-1809.	4.1	30
117	Micellar effect in hydroformylation of high olefin catalysed by water-soluble rhodium complexes associated with sulfonated diphosphines. Journal of Molecular Catalysis A, 2003, 200, 157-163.	4.8	30
118	NewC2- andC1-Symmetric Phosphorus Ligands Based on Carbohydrate Scaffolds and Their Use in the Iridium-Catalysed Hydrogenation of Ketimines. European Journal of Organic Chemistry, 2006, 2006, 627-633.	2.4	30
119	CO-ethylene copolymerization reactions in different reaction media catalyzed by palladium(II) complexes with chelating diphosphines bearing ortho-methoxy-substituted aryl groups. Journal of Molecular Catalysis A, 2007, 265, 292-305.	4.8	30
120	An outstanding palladium system containing a C2-symmetrical phosphite ligand for enantioselective allylic substitution processes. Chemical Communications, 2008, , 6197.	4.1	30
121	Modular Synthesis of Functionalisable Alkoxyâ€īethered Nâ€Heterocyclic Carbene Ligands and an Active Catalyst for Buchwald–Hartwig Aminations. Advanced Synthesis and Catalysis, 2014, 356, 460-474.	4.3	30
122	New alkyl derivatives phosphine sulfonate (P–O) ligands. Catalytic activity in Pd-catalysed Suzuki–Miyaura reactions in water. Dalton Transactions, 2007, , 2859-2861.	3.3	29
123	New <i>C</i> ₂ â€Symmetric Diphosphite Ligands Derived from Carbohydrates: Effect of the Remote Stereocenters on Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2007, 349, 1983-1998.	4.3	29
124	SPANamine derivatives in the catalytic asymmetric $\hat{I}\pm$ -fluorination of \hat{I}^2 -keto esters. Tetrahedron: Asymmetry, 2011, 22, 1490-1498.	1.8	29
125	Highly Efficient Rhâ€catalysts Immobilised by Ï€â€Ï€ Stacking for the Asymmetric Hydroformylation of Norbornene under Continuous Flow Conditions. ChemCatChem, 2019, 11, 2195-2205.	3.7	29
126	Metal complexes with atropisomeric sulfur ligands in asymmetric hydroformylation X-ray structure of [Rh2(μ-biphes)(cod)2] (H2biphes = 4,4′-biphenanthrene-3,3′-dithiol). Journal of Organometallic Chemistry, 1997, 545-546, 79-87.	1.8	28

#	Article	IF	CITATIONS
127	Preparation of carbonyl phosphine rhodium complexes with dithiolate bridges. Application as catalyst precursors in the hydroformylation of 1-hexene. Journal of Organometallic Chemistry, 1995, 489, 101-106.	1.8	27
128	Room temperature asymmetric Pd-catalyzed methoxycarbonylation of norbornene: highly selective catalysis and HP-NMR studies. Dalton Transactions, 2012, 41, 6980.	3.3	27
129	Chiral Diphosphites as Ligands for the Rhodium- and Iridium-Catalysed Asymmetric Hydrogenation: Precatalyst Complexes, Intermediates and Kinetics of the Reaction. European Journal of Inorganic Chemistry, 2000, 2000, 1287-1294.	2.0	27
130	Structures, Reactivity, and Catalytic Activity of Dithiolato-Bridged Heterobimetallic MRh (M = Pt, Pd) Complexes. Organometallics, 2002, 21, 2609-2618.	2.3	26
131	Pd atalysed Mono―and Dicarbonylation of Aryl Iodides: Insights into the Mechanism and the Selectivity. Chemistry - A European Journal, 2014, 20, 10982-10989.	3.3	26
132	Rhodium(I) and iridium(I) complexes of Ph2P(S)CH2P(S)Ph2, bis(diphenylphosphino)methane disulfide. Journal of Organometallic Chemistry, 1991, 403, 229-241.	1.8	25
133	Hydroformylation of glucal derivatives with rhodium catalysts. Crucial influence of the auxiliary ligand tris(ortho-tert-butylphenyl) phosphite. Journal of the Chemical Society Chemical Communications, 1992, , 639.	2.0	25
134	Synthesis and reactivity of cationic iridium(I) complexes of cycloocta-1,5-diene and chiral dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4611-4618.	1.1	25
135	Iridium complexes containing the first sugar dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. Journal of the Chemical Society Dalton Transactions, 1999, , 3439-3444.	1.1	25
136	Coordination Chemistry and Asymmetric Catalysis with a Chiral Diphosphonite. European Journal of Inorganic Chemistry, 2004, 2004, 4193-4201.	2.0	25
137	Asymmetric hydrogenation of prochiral olefins catalysed by furanoside thioether–phosphinite Rh(i) and Ir(i) complexes. Dalton Transactions, 2005, , 2557.	3.3	25
138	New camphor-derived sulfur chiral controllers: Synthesis of (2R-exo)-10-methylthio-2-bornanethiol and (2R-exo)-2,10-bis(methylthio)bornane. Tetrahedron: Asymmetry, 1996, 7, 3553-3558.	1.8	24
139	Rhodium cationic complexes using macrocyclic diphosphines as chiral ligands:. Journal of Organometallic Chemistry, 1999, 587, 136-143.	1.8	24
140	New chiral amino-phosphite and phosphite-phosphoroamidite ligands for the copper-catalyzed asymmetric 1,4-addition of diethylzinc to cyclohexenone. Tetrahedron: Asymmetry, 2001, 12, 2861-2866.	1.8	24
141	Hydroformylation of 1-octene with rhodium catalysts in fluorous systems. Journal of Molecular Catalysis A, 2004, 208, 97-101.	4.8	24
142	Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination. Chemical Communications, 2015, 51, 16342-16345.	4.1	24
143	A General Oneâ€Pot Methodology for the Preparation of Mono―and Bimetallic Nanoparticles Supported on Carbon Nanotubes: Application in the Semiâ€hydrogenation of Alkynes and Acetylene. Chemistry - A European Journal, 2019, 25, 8321-8331.	3.3	24
144	Diolefin and carbonyl rhodium(I) and iridium(I) complexes with phosphine sulphide ligands. Crystal structure of [Rh(COD)(Et2P(S)(S)PEt2)]ClO4. Journal of Organometallic Chemistry, 1989, 373, 269-278.	1.8	23

#	Article	IF	CITATIONS
145	Asymmetric hydroformylation of styrene with rhodium complexes of sulfonated diphosphines in aqueous systems. Journal of Molecular Catalysis A, 1999, 143, 49-55.	4.8	23
146	A New Diphosphane Derived from Carbohydrates as an Effective Ligand for Asymmetric Hydrogenation. European Journal of Inorganic Chemistry, 2000, 2000, 2011-2016.	2.0	23
147	Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies. Journal of Molecular Catalysis A, 2003, 195, 113-124.	4.8	23
148	New Highly Effective Phosphite-Phosphoramidite Ligands for Palladium-Catalysed Asymmetric Allylic Alkylation Reactions. Advanced Synthesis and Catalysis, 2007, 349, 836-840.	4.3	23
149	Pyrazolyl-pyrimidine based ligands in palladium catalyzed copolymerization and terpolymerization of CO/olefins. Journal of Organometallic Chemistry, 2008, 693, 1269-1275.	1.8	23
150	Mononuclear Pt(II) and Pd(II) 1,4-dithiolato complexes. Crystal structures of [Pt((â^') DIOS) (PPh3)2] and [Pd(S(CH2) 4S)(Ph2P(CH2) 3PPh2)]. Application in styrene hydroformylation. Journal of Organometallic Chemistry, 1997, 530, 199-209.	1.8	22
151	Synthesis of rhodium(I) complexes with the new dithiol chiral ligand (+)-trans-2,3-bis(mercaptomethyl)-bicyclo[2.2.2]octane (H2BCOS) their application as catalysts precursors in the styrene hydroformylation. Journal of Organometallic Chemistry, 1997, 539, 1-7.	1.8	22
152	Mononuclear Platinum(II) and Palladium(II) Dithiolate Complexes as Chelate Metalloligands for Preparation of Heterobimetallic d8â~'d8 Complexes. Inorganic Chemistry, 1998, 37, 2626-2632.	4.0	22
153	High-branched selectivity in the palladium-catalysed alkoxycarbonylation of styrene in the presence of thiol–thioether atropisomeric ligands. Journal of Molecular Catalysis A, 1999, 143, 171-180.	4.8	22
154	Study of the hydroformylation of 2,5-dihydrofuran catalyzed by rhodium diphosphine complexes. Canadian Journal of Chemistry, 2001, 79, 560-565.	1.1	22
155	Studies on the Characterization of Several Iridium– and Rhodium–clay Catalysts and Their Activity in Imine Hydrogenation. Journal of Catalysis, 2001, 201, 70-79.	6.2	21
156	Rhodium-catalysed asymmetric hydroformylation of vinylarenes with chiral P,N-ligands based on DIOP skeleton. Journal of Molecular Catalysis A, 2002, 184, 111-119.	4.8	21
157	New complexes of palladium(II) with chelating heterocyclic nitrogen ligands Journal of Organometallic Chemistry, 2002, 664, 77-84.	1.8	21
158	Furanoside diphosphinites as suitable ligands for the asymmetric catalytic hydrogenation of prochiral olefins. Tetrahedron: Asymmetry, 2004, 15, 2247-2251.	1.8	21
159	Unraveling theo-Methoxy Effect in the CO/Ethene Copolymerization Reaction by Diphosphanepalladium(II) Catalysis. European Journal of Inorganic Chemistry, 2007, 2007, 2702-2710.	2.0	21
160	Dipyridophenazine as Electronic Tunable Ligands for the Palladium-Catalyzed Synthesis of Polyketones. Organometallics, 2008, 27, 1019-1021.	2.3	21
161	Asymmetric hydroformylation of styrene using dithiolato bridged dirhodium catalyst with BDPP as chiral ligand. Tetrahedron: Asymmetry, 1995, 6, 1885-1888.	1.8	20
162	Synthesis, Structure, and Dynamic Behaviour of Transition Metal Chelate Complexes with Atropisomeric Dithioether Ligands. European Journal of Inorganic Chemistry, 1998, 1998, 113-118.	2.0	20

#	Article	IF	CITATIONS
163	Highly selective hydrocarboxylation of styrene with oxalic acid or water using palladium ortho-amino arenethiolates with intramolecular coordinating nitrogen Lewis bases. Inorganic Chemistry Communication, 1998, 1, 295-298.	3.9	20
164	Synthesis of Rh(I) and Ir(I) metal complexes with the first two chiral dithiolate ligands derived from carbohydrates. Journal of Organometallic Chemistry, 1999, 586, 125-137.	1.8	20
165	Biarylphosphonites: a class of monodentate phosphorus(iii) ligands that outperform their chelating analogues in asymmetric hydrogenation catalysis. Chemical Communications, 2000, , 961-962.	4.1	20
166	New insights on the asymmetric hydroboration of perfluoroalkenes. Chemical Communications, 2004, , 464.	4.1	20
167	Strategies for the Immobilization of Homogeneous Catalysts and Their Use in the Synthesis of Carbamates. Industrial & Engineering Chemistry Research, 2008, 47, 8032-8036.	3.7	20
168	Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications, 2011, 47, 7869.	4.1	20
169	Highly Selective Palladiumâ€Catalysed Aminocarbonylation of Aryl Iodides using a Bulky Diphosphine Ligand. Advanced Synthesis and Catalysis, 2012, 354, 1971-1979.	4.3	20
170	Rhodium cationic complexes using dithioethers as chiral ligands. Application in styrene hydroformylation. Journal of Organometallic Chemistry, 1998, 559, 23-29.	1.8	19
171	Modular carbohydrate diphosphite and phosphite–phosphoroamidite ligands for asymmetric Rh-catalyzed hydrosilylation of ketones. Tetrahedron: Asymmetry, 2002, 13, 83-86.	1.8	19
172	Furanoside thioether–phosphinite ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. Tetrahedron: Asymmetry, 2005, 16, 3877-3880.	1.8	19
173	Furanoside thioether–phosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions: Scope and limitations. Journal of Organometallic Chemistry, 2006, 691, 2257-2262.	1.8	19
174	Changing the Palladium Coordination to Phosphinoimidazolines with a Remote Triazole Substituent. Advanced Synthesis and Catalysis, 2011, 353, 3255-3261.	4.3	19
175	A new approach for the preparation of well-defined Rh and Pt nanoparticles stabilized by phosphine-functionalized silica for selective hydrogenation reactions. Chemical Communications, 2017, 53, 3261-3264.	4.1	19
176	Consecutive catalytic hydroformylation-acetalization of glucal derivatives with rhodium–phosphite and pyridinium toluene-p-sulfonate as catalysts: the influence of protecting groups Chemical Communications, 1998, , 1803-1804.	4.1	18
177	Synthesis of novel diphosphines from d-(+)-glucose. Use in asymmetric hydrogenation. Tetrahedron: Asymmetry, 2000, 11, 4701-4708.	1.8	18
178	Furanoside diphosphines derived from d-(+)-xylose and d-(+)-glucose as ligands in rhodium-catalysed asymmetric hydroformylation reactions. Tetrahedron: Asymmetry, 2001, 12, 651-656.	1.8	18
179	Efficiency of natural bentonite versus synthetic organo(bis-silantriolates) as supports towards the heterogenisation of asymmetric hydroboration. Tetrahedron: Asymmetry, 2003, 14, 1611-1615.	1.8	18
180	Synthesis and characterization of palladium(ii) complexes with new diphosphonium-diphosphine and diphosphine ligands. Production of low molecular weight alternating polyketones via catalytic CO/ethene copolymerisation. Dalton Transactions, 2006, , 2964-2973.	3.3	18

#	Article	IF	CITATIONS
181	A highly selective synthesis of 3-hydroxy-2-methylpropionamide involving a one-pot tandem hydroformylation–hydrogenation sequence. Chemical Communications, 2006, , 191-193.	4.1	18
182	Iridium complexes with new 1,2-dithioether chiral ligands containing a rigid cyclic backbone. Application in homogeneous catalytic asymmetric hydrogenationâ€Sâ€. Journal of the Chemical Society Dalton Transactions, 1998, , 3517-3522.	1,1	17
183	In situ study of diphosphine rhodium systems in asymmetric hydroformylation of styrene. Dalton Transactions RSC, 2001, , 1293-1300.	2.3	17
184	Thioether–phosphinite and diphosphinite ligands derived from d-xylose for the copper-catalyzed asymmetric 1,4-addition to 2-cyclohexenone. Tetrahedron: Asymmetry, 2005, 16, 2161-2165.	1.8	17
185	New chiral diphosphites derived from substituted 9,10-dihydroanthracene. Applications in asymmetric catalytic processes. Tetrahedron: Asymmetry, 2009, 20, 1009-1014.	1.8	17
186	Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. Topics in Organometallic Chemistry, 2011, , 11-29.	0.7	17
187	Recycling of allylic alkylation Pd catalysts containing phosphine-imidazoline ligands in ionic liquids. Green Chemistry, 2012, 14, 2715.	9.0	17
188	A mild route to solid-supported rhodium nanoparticle catalysts and their application to the selective hydrogenation reaction of substituted arenes. Catalysis Science and Technology, 2015, 5, 3762-3772.	4.1	17
189	Surface characterisation of phosphine and phosphite stabilised Rh nanoparticles: a model study. RSC Advances, 2015, 5, 97036-97043.	3.6	17
190	Preparation of Cationic Complexes [Rh(diolefin)L ₂]C10 ₄ and Their Carbonylation Reactions. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1979, 9, 577-584.	1.8	16
191	Diolefin cationic iridium(I) complexes with sulfur ligands. Journal of Organometallic Chemistry, 1983, 251, 369-375.	1.8	16
192	Preparation and catalytic activity of cationic rhodium(I) and iridium(I) complexes with phosphine sulphide ligands. Polyhedron, 1987, 6, 1329-1335.	2.2	16
193	Synthesis, reactivity and catalytic properties of rhodium complexes of (R,R)-1-benzyl-3,4-dithioetherpyrrolidines. Inorganica Chimica Acta, 1999, 295, 64-70.	2.4	16
194	Asymmetric hydroformylation of vinylarenes with rhodium diphosphite catalyst. Inorganic Chemistry Communication, 2000, 3, 515-519.	3.9	16
195	Mixed thioether-phosphite and phosphine-phosphite ligands for copper-catalyzed asymmetric 1,4-addition of organometallic reagents to cyclohexenone. Journal of Molecular Catalysis A, 2002, 185, 11-16.	4.8	16
196	Effect of 5-Me substituent(s) on the catalytic activity of palladium(II) 2,2′-bipyridine complexes in CO/4-tert-butylstyrene copolymerization. Journal of Organometallic Chemistry, 2004, 689, 1521-1529.	1.8	16
197	Ligand effect in the Rh-NP catalysed partial hydrogenation of substituted arenes. Catalysis Science and Technology, 2013, 3, 2828.	4.1	16
198	Solventless Coupling of Epoxides and CO2 in Compressed Medium Catalysed by Fluorinated Metalloporphyrins. Catalysts, 2017, 7, 210.	3.5	16

#	Article	IF	CITATIONS
199	Cationic organocomplexes of rhodium(I) as homogeneous hydroformylation catalysts. Journal of Molecular Catalysis, 1978, 4, 231-232.	1.2	15
200	Control of Polymer Composition in Pd-Catalyzed CO/Olefin Terpolymerization Reactions. Advanced Synthesis and Catalysis, 2005, 347, 839-846.	4.3	15
201	Asymmetric Hydroformylation. Topics in Current Chemistry, 2013, 342, 79-115.	4.0	15
202	C–H benzylic oxidation promoted by dinuclear iron DBDOC iminopyridine complexes. Inorganica Chimica Acta, 2015, 431, 156-160.	2.4	15
203	Immobilized Molecular Catalysts for CO ₂ Photoreduction. Advanced Sustainable Systems, 2022, 6, .	5.3	15
204	Catalytic hydroformylation of alkenes with cationic dinuclear rhodium(I) complexes, and the effect of the couter ions. Journal of Organometallic Chemistry, 1991, 403, 393-399.	1.8	14
205	Title is missing!. Catalysis Letters, 1999, 60, 121-123.	2.6	14
206	Ir(I) complexes with oxazoline-thioether ligands: nucleophilic attack of pyridine on coordinated 1,5-cyclooctadiene and application as catalysts in imine hydrogenation. Journal of Organometallic Chemistry, 2004, 689, 1911-1918.	1.8	14
207	Unprecedent Chemo―and Stereoselective Palladiumâ€Catalysed Methoxycarbonylation of Norbornene. Advanced Synthesis and Catalysis, 2009, 351, 1813-1816.	4.3	14
208	Carbonyl cationic rhodium(I) and iridium(I) complexes with sulphur donor and triphenylphosphine ligands. Transition Metal Chemistry, 1984, 9, 237-241.	1.4	13
209	Dihydroiridium diolefin with sulfur ligands and related complexes. Journal of Organometallic Chemistry, 1985, 293, 115-123.	1.8	13
210	The influence of various azolate bridging ligands on the catalytic activity of dinuclear rhodium(I) precursors in the hydroformylation reaction. Journal of Molecular Catalysis, 1987, 43, 1-6.	1.2	13
211	A New Reaction of Tetrabutylammonium Camphorsulfonate with P4S10. Synthesis and Crystal Structure of the First Chiral Tetrathiophosphate Derivative. Tetrahedron Letters, 1997, 38, 6457-6460.	1.4	13
212	Hydroformylation of styrene using thiolato–pyrazolate bridge rhodium catalysts modified with phosphorous ligands. Journal of Molecular Catalysis A, 1998, 136, 279-284.	4.8	13
213	The influence of chiral phosphite and phosphonite ligands on the hydrogenation of imines with rhodium and iridium complexes. Inorganic Chemistry Communication, 2000, 3, 132-135.	3.9	13
214	Asymmetric hydroformylation of vinyl arenes catalyzed by furanoside diphosphinites-Rh(I) complexes. Applied Catalysis A: General, 2005, 282, 215-220.	4.3	13
215	Phosphite–oxazoline ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. Journal of Molecular Catalysis A, 2006, 249, 207-210.	4.8	13
216	HPâ€NMR Study of the Pdâ€Catalyzed Methoxycarbonylation of Styrene Using Monodentate and Bidentate Phosphaneâ€Modified Systems. European Journal of Inorganic Chemistry, 2008, 2008, 4625-4637.	2.0	13

#	Article	IF	CITATIONS
217	Effect of pH on catalyst activity and selectivity in the aqueous Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles. Catalysis Communications, 2015, 71, 88-92.	3.3	13
218	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	3.3	13
219	Mono and dinuclear cationic rhodium(I) and iridium(I) complexes with sulphur donor and group Vb ligands. Transition Metal Chemistry, 1984, 9, 83-87.	1.4	12
220	Preparation, structure and reactivity of dinuclear aminothiolate-bridged iridium complexes. Journal of the Chemical Society Dalton Transactions, 1995, , 2137-2142.	1.1	12
221	Synthesis and characterization of rhodium complexes containing atropisomeric sulfur ligands. Structure of [{Rh2(µ-L)(CO)3[P(OC6H4But-o)3]}2](H2L = 1,1′-binaphthalene-2,2′-dithiol). Journal of the Chemical Society Dalton Transactions, 1996, , 969-973.	1.1	12
222	Hydroformylation of allyl ethers. A study of the regioselectivity using rhodium catalysts. Journal of Molecular Catalysis A, 1999, 137, 93-100.	4.8	12
223	Title is missing!. Catalysis Letters, 2002, 82, 85-88.	2.6	12
224	Oxidative carbonylation of aniline with new cobalt catalytic systems. Canadian Journal of Chemistry, 2005, 83, 764-768.	1.1	12
225	Pyranoside phosphite–phosphoroamidite ligands for Pd-catalyzed asymmetric allylic alkylation reactions. Tetrahedron: Asymmetry, 2006, 17, 3282-3287.	1.8	12
226	Pd-catalysed asymmetric Suzuki–Miyaura reactions using chiral mono- and bidentate phosphorus ligands. Journal of Organometallic Chemistry, 2013, 743, 31-36.	1.8	12
227	Fe atalyzed Olefin Epoxidation with Tridentate Nonâ€Heme Ligands and Hydrogen Peroxide as the Oxidant. ChemCatChem, 2013, 5, 1092-1095.	3.7	12
228	Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids. ChemCatChem, 2018, 10, 2450-2457.	3.7	12
229	Cationic dinuclear rhodium complexes as catalyst precursors for the hydroformylation of alkenest. Journal of the Chemical Society Dalton Transactions, 1989, , 1579-1582.	1.1	11
230	Dinuclear Rh(II) complexes in styrene hydroformylation. Enhancement of catalytic activity through orthometalation. Inorganica Chimica Acta, 1995, 233, 161-164.	2.4	11
231	Montmorillonite K10 as a suitable co-catalyst for atom economy in chelation-assisted intermolecular hydroacylation. Tetrahedron Letters, 2003, 44, 1631-1634.	1.4	11
232	Novel Polymer Stabilized Water Soluble Ru-Nanoparticles as Aqueous Colloidal Fischer–Tropsch Catalysts. Topics in Catalysis, 2013, 56, 1208-1219.	2.8	11
233	Correlation between Hydrocarbon Product Distribution and Solvent Composition in the Fischer–Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanoparticles. ACS Catalysis, 2015, 5, 4568-4578.	11.2	11
234	Core-substituted naphthalenediimides anchored on BiVO ₄ for visible light-driven water splitting. Green Chemistry, 2017, 19, 2448-2462.	9.0	11

#	Article	IF	CITATIONS
235	Diolefin cationic rhodium complexes with sulfur donors. X-ray structure of [Rh(NBD)2(SEt2)]CIO4. Journal of Organometallic Chemistry, 1983, 241, 77-86.	1.8	10
236	Rhodium(I) and iridium(I) carbonyl complexes with sulphur-donor ligands; X-ray crystal structure of [Rh(CO)2(ButSCHCHSBut)]ClO4. Journal of the Chemical Society Dalton Transactions, 1984, , 2665-2669.	1.1	10
237	Preparation and characterization of the dimetallo ketone complexes Ir2(.muS-tert-Bu)2(.muCO)L2(CO)2I2: crystal and molecular structure of the [iridium] complex where L = trimethylphosphine. Inorganic Chemistry, 1987, 26, 3479-3482.	4.0	10
238	Influence of different ligands in homogeneous hydrogenation using iridium complexes with thioether ligands. Journal of Molecular Catalysis, 1990, 61, 163-171.	1.2	10
239	Modified precursor systems for the hydroformylation of olefines. Inorganica Chimica Acta, 1990, 175, 77-81.	2.4	10
240	Asymmetric Allylic Substitution Reactions with a Xylophos-Pd Catalyst. Monatshefte Für Chemie, 2000, 131, 1173-1179.	1.8	10
241	Reactivity of mononuclear dithiolato palladium and platinum metalloligands towards the formation of homo- and heterobimetallic complexes. Inorganic Chemistry Communication, 2002, 5, 351-354.	3.9	10
242	First Allylpalladium Systems Containing Chiral Imidazolylpyridine Ligands – Structural Studies and Catalytic Behaviour. European Journal of Inorganic Chemistry, 2007, 2007, 132-139.	2.0	10
243	Salcyâ€Naphthalene Cobalt Complexes as Catalysts for the Synthesis of High Molecular Weight Polycarbonates. ChemCatChem, 2017, 9, 3974-3981.	3.7	10
244	Mechanistic Insights of Photocatalytic CO ₂ Reduction: Experimental <i>versus</i> Computational Studies. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	10
245	Reactivity of tetracarbonyl dithiolate-bridged rhodium(I) complexes with diphosphines. Journal of Organometallic Chemistry, 1998, 551, 375-381.	1.8	9
246	New half-sandwich heterobimetallic CpMPt (M=Rh, Ir) dithiolato bridged complexes Journal of Organometallic Chemistry, 2002, 662, 188-191.	1.8	9
247	Selective hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated oxosteroids with homogeneous rhodium catalysts. Journal of Molecular Catalysis A, 2006, 247, 275-282.	4.8	9
248	Novel iminopyridine derivatives: ligands for preparation of Fe(<scp>ii</scp>) and Cu(<scp>ii</scp>) dinuclear complexes. Dalton Transactions, 2016, 45, 3564-3576.	3.3	9
249	Regioselectivity Control in Pd-Catalyzed Telomerization of Isoprene Enabled by Solvent and Ligand Selection. ACS Catalysis, 2020, 10, 11458-11465.	11.2	9
250	Rhodium(I) complexes of 4-t-butylcyclohexyldiaziridine and adamantyldiaziridine: Synthesis, structure and catalytic activity. Journal of Organometallic Chemistry, 1993, 443, 241-247.	1.8	8
251	Rh(I) and Ir(I) dithioether complexes and their application in the hydrogenation of olefins. Inorganica Chimica Acta, 2001, 325, 58-64.	2.4	8
252	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligandsSynthesis and catalytic activity in the hydrogenation of alkenes. Inorganica Chimica Acta, 2004, 357, 2957-2964.	2.4	8

#	Article	IF	CITATIONS
253	Synthesis of palladium(ii) complexes containing a new α-d-xylofuranose-modified diphosphine and their application as catalyst precursors in the co- and terpolymerization of CO–ethene and propene. Dalton Transactions, 2008, , 2741.	3.3	8
254	Effect of polymeric stabilizers on Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles supported on TiO2. Journal of Molecular Catalysis A, 2016, 417, 43-52.	4.8	8
255	A Simple and Versatile Approach for the Fabrication of Paperâ€Based Nanocatalysts: Low Cost, Easy Handling, and Catalyst Recovery. ChemCatChem, 2016, 8, 3041-3044.	3.7	8
256	Efficient synthesis of chiral γ-aminobutyric esters <i>via</i> direct rhodium-catalysed enantioselective hydroaminomethylation of acrylates. Catalysis Science and Technology, 2020, 10, 630-634.	4.1	8
257	Metal complexes bearing ONO ligands as highly active catalysts in carbon dioxide and epoxide coupling reactions. Inorganica Chimica Acta, 2021, 517, 120194.	2.4	8
258	Cationic complexes of rhodium(I) with phenanthroline type ligands. Transition Metal Chemistry, 1982, 7, 246-249.	1.4	7
259	Iridium and rhodium perfluorobenzenethiolato complexes. Syntheses and catalytic behavior. Inorganica Chimica Acta, 1997, 255, 389-393.	2.4	7
260	The synthesis and single-crystal X-ray structure of the first mononuclear iridium carbonyl hydride with two orthometallated phosphite ligands, cis-[IrHCO{P(O-o-tBuC6H3) (O-o-tBuC6H4)2}2]. Inorganic Chemistry Communication, 1999, 2, 21-24.	3.9	7
261	Heterobimetallic MIr (M=Pt or Pd) dithiolato bridge complexes. Inorganic Chemistry Communication, 1999, 2, 89-92.	3.9	7
262	Pd-catalyzed asymmetric allylic alkylation using furanoside diphosphinite ligands. Inorganica Chimica Acta, 2005, 358, 3824-3828.	2.4	7
263	C1-Symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates. Dalton Transactions, 2011, 40, 2852.	3.3	7
264	Interception of a Rh(I)–Rh(III) dinuclear trihydride complex revealing the dihydrogen activation by [Rh(CO)2{(R,R)-Ph–BPE}]. Dalton Transactions, 2012, 41, 3369.	3.3	7
265	Cationic Iridium Complexes with Chiral Dithioether Ligands: Synthesis, Characterisation and Reactivity under Hydrogenation Conditions. European Journal of Inorganic Chemistry, 2005, 2005, 2315-2323.	2.0	6
266	Asymmetric Carbonylations. , 2013, , 383-411.		6
267	Recyclable supported Pd-NHC catalytic systems for the copper-free Sonogashira cross-coupling in flow. Sustainable Chemistry and Pharmacy, 2018, 9, 69-75.	3.3	6
268	Pd, Cu and Bimetallic PdCu NPs Supported on CNTs and Phosphineâ€Functionalized Silica: Oneâ€Pot Preparation, Characterization and Testing in the Semiâ€Hydrogenation of Alkynes. European Journal of Inorganic Chemistry, 2021, 2021, 4970-4978.	2.0	6
269	Dihydroiridium diolefin complexes with sulfur ligands. Journal of Organometallic Chemistry, 1984, 272, C67-C69.	1.8	5
270	Synthesis and structural determination of the stable dinuclear carbonyl-phosphite rhodium(0) complex: (CO)2(P(O-o-tBuPh)3)Rh-Rh(P(O-o-tBuPh)3)(CO)3. Inorganic Chemistry Communication, 1999, 2, 283-287.	3.9	5

#	Article	IF	CITATIONS
271	Phosphite Ligands in Asymmetric Hydrogenation. ACS Symposium Series, 2004, , 161-173.	0.5	5
272	Novel Metal Nanoparticles Stabilized with (2R,4R)-2,4-bis(diphenylphosphino) Pentane on SiO2. Their Use as Catalysts in Enantioselective Hydrogenation Reactions. Current Organic Chemistry, 2012, 16, 2754-2762.	1.6	5
273	Orthorhombic crystal form of trans-carbonylchlorobis(triphenylphosphine)rhodium(I) dichloromethane solvate. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 1307-1308.	0.4	4
274	Synthesis and stereochemical study of new complexes of Pd and Pt with chiral dithioether ligands. Dalton Transactions RSC, 2000, , 4154-4159.	2.3	4
275	Novel chiral dithioethers derived from l-tartaric acid. Tetrahedron: Asymmetry, 2001, 12, 3029-3034.	1.8	4
276	Norbornene Bidentate Ligands: Coordination Chemistry and Enantioselective Catalytic Applications. European Journal of Inorganic Chemistry, 2010, 2010, 758-766.	2.0	4
277	Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts. Nanomaterials, 2017, 7, 58.	4.1	4
278	Synthesis and structural studies of rhodium(I)-catalytic precursors containing two furanoside diphosphines. Journal of Organometallic Chemistry, 2001, 629, 77-82.	1.8	3
279	Cationic iridium complexes with C2-symmetry binaphthalene-core disulfide ligands. Inorganica Chimica Acta, 2004, 357, 2957-2964.	2.4	3
280	Emerging strategies in catalysis. Dalton Transactions, 2007, , 5482.	3.3	3
281	Asymmetric hydrogenation of imines. Advances in Catalysis, 2021, 68, 205-289.	0.2	3
282	Controlled Oneâ€pot Synthesis of PdAg Nanoparticles and Their Application in the Semiâ€hydrogenation of Acetylene in Ethyleneâ€rich Mixtures. ChemNanoMat, 2022, 8, .	2.8	3
283	Metal Complexes as Catalysts for Addition of Carbon Monoxide. , 2003, , 141-206.		2
284	Chiral Pt/ZrO2 Catalysts. Enantioselective Hydrogenation of 1-phenyl-1,2-propanedione. Molecules, 2010, 15, 3428-3440.	3.8	2
285	Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction. Pure and Applied Chemistry, 2019, 91, 1651-1664.	1.9	2
286	Sustainable Synthesis of Polymeric Materials versus Fine Chemicals via CO2 Addition to Epoxides. Chemistry Proceedings, 2021, 3, 17.	0.1	1
287	Supported Catalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	1
288	Montmorillonite K10 as a Suitable Co-Catalyst for Atom Economy in Chelation-Assisted Intermolecular Hydroacylation ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
289	Efficiency of Natural Bentonite versus Synthetic Organo(bis-silantriolates) as Supports Towards the Heterogenization of Asymmetric Hydroboration ChemInform, 2003, 34, no.	0.0	0
290	Synthesis of 2-Substituted-benzothiazoles by Palladium-Catalyzed Intramolecular Cyclization of o-Bromophenylthioureas and o-Bromophenylthioamides ChemInform, 2003, 34, no.	0.0	0
291	Improved Sonogashira C—C Coupling Through Clay Supported Palladium Complexes with Tridentate Pincer Bis-carbene Ligands ChemInform, 2003, 34, no.	0.0	Ο
292	Tunable Furanoside Diphosphite Ligands: A Powerful Approach in Asymmetric Catalysis. ChemInform, 2004, 35, no.	0.0	0
293	New Insights on the Asymmetric Hydroboration of Perfluoroalkenes ChemInform, 2004, 35, no.	0.0	0
294	Ligands Derived from Carbohydrates for Asymmetric Catalysis. ChemInform, 2004, 35, no.	0.0	0
295	Recent Advances in Rh-Catalyzed Asymmetric Hydroformylation Using Phosphite Ligands. ChemInform, 2004, 35, no.	0.0	0
296	Furanoside Diphosphinites as Suitable Ligands for the Asymmetric Catalytic Hydrogenation of Prochiral Olefins ChemInform, 2004, 35, no.	0.0	0
297	An Efficient Method for the Synthesis of Enantiopure Phosphine?Imidazoline Ligands: Application to the Ir-Catalyzed Hydrogenation of Imines ChemInform, 2005, 36, no.	0.0	Ο
298	Coordination Chemistry and Asymmetric Catalysis with a Chiral Diphosphonite ChemInform, 2005, 36, no.	0.0	0
299	Phosphite Ligands in Asymmetric Hydrogenation. ChemInform, 2005, 36, no.	0.0	Ο
300	First Successful Application of Diphosphite Ligands in the Asymmetric Hydroformylation of Dihydrofurans ChemInform, 2005, 36, no.	0.0	0
301	Furanoside Thioether—Phosphinite Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions ChemInform, 2005, 36, no.	0.0	0
302	New Phosphite—Oxazoline Ligands for Efficient Pd-Catalyzed Substitution Reactions ChemInform, 2005, 36, no.	0.0	0
303	C1 and C2-Symmetric Carbohydrate Phosphorus Ligands in Asymmetric Catalysis. ChemInform, 2005, 36, no.	0.0	Ο
304	Sugar-Based P-Ligands for Asymmetric Hydrogenation. ChemInform, 2005, 36, no.	0.0	0
305	Catalytic Properties of Soluble Iridium Nanoparticles. , 0, , 369-389.		0
306	Metal-catalysed polymerisation. Dalton Transactions, 2009, , 8783.	3.3	0

#	Article	IF	CITATIONS
307	Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Molecular Catalysis, 2019, 477, 110551.	2.0	0

Homogeneous Hydrogenation of Imines Catalyzed by Iridium Complexes. , 2017, , 181-188.