Peter Behroozi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3601185/publications.pdf

Version: 2024-02-01

38660 30010 10,867 111 50 103 citations h-index g-index papers 112 112 112 6025 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Linking Extragalactic Transients and Their Host Galaxy Properties: Transient Sample, Multiwavelength Host Identification, and Database Construction. Astrophysical Journal, Supplement Series, 2022, 259, 13.	3.0	6
2	A Census of the Bright $z=8.5$ â \in "11 Universe with the Hubble and Spitzer Space Telescopes in the CANDELS Fields. Astrophysical Journal, 2022, 928, 52.	1.6	57
3	The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4722-4752.	1.6	5
4	Clustering and halo abundances in early dark energy cosmological models. Monthly Notices of the Royal Astronomical Society, 2021, 504, 769-781.	1.6	31
5	UniverseMachine: Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations. Astrophysical Journal, 2021, 915, 116.	1.6	12
6	An Empirical Determination of the Dependence of the Circumgalactic Mass Cooling Rate and Feedback Mass Loading Factor on Galactic Stellar Mass. Astrophysical Journal, 2021, 916, 101.	1.6	5
7	Mock light-cones and theory friendly catalogues for the CANDELS survey. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4858-4876.	1.6	35
8	Observational measures of halo properties beyond mass. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2800-2824.	1.6	8
9	Observing correlations between dark matter accretion and galaxy growth: II. testing the impact of galaxy mass, star formation indicator, and neighbour colours. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3285-3300.	1.6	2
10	$\hat{Hl\pm}$ Emission and the Dependence of the Circumgalactic Cool Gas Fraction on Halo Mass. Astrophysical Journal, 2020, 888, 33.	1.6	2
11	Observing the Effects of Galaxy Interactions on the Circumgalactic Medium. Astrophysical Journal Letters, 2020, 893, L3.	3.0	4
12	Semi-analytic forecasts for JWST – IV. Implications for cosmic reionization and LyC escape fraction. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4574-4592.	1.6	45
13	Physical correlations of the scatter between galaxy mass, stellar content, and halo mass. Monthly Notices of the Royal Astronomical Society, 2020, 493, 337-350.	1.6	22
14	Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3685-3707.	1.6	24
15	Clustering with JWST: Constraining galaxy host halo masses, satellite quenching efficiencies, and merger rates at <i>z</i> Â=Â4â^10. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1178-1196.	1.6	17
16	The Universe at <i>z</i> & Lamp;gt; 10: predictions for <i>JWST</i> from the <scp>universemachine</scp> DR1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5702-5718.	1.6	74
17	Observing correlations between dark matter accretion and galaxy growth – I. Recent star formation activity in isolated Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1253-1272.	1.6	7
18	Investigating Overdensities around zÂ>Â6 Galaxies through ALMA Observations of [C ii]. Astrophysical Journal, 2020, 889, 98.	1.6	6

#	Article	IF	CITATIONS
19	The ALMA Spectroscopic Survey in the HUDF: A Model to Explain Observed 1.1 and 0.85 mm Dust Continuum Number Counts. Astrophysical Journal, 2020, 891, 135.	1.6	25
20	Associations of dwarf galaxies in a Î-CDM Universe. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5932-5940.	1.6	2
21	Searches after Gravitational Waves Using ARizona Observatories (SAGUARO): System Overview and First Results from Advanced LIGO/Virgo's Third Observing Run. Astrophysical Journal Letters, 2019, 881, L26.	3.0	41
22	On the Effect of Environment on Line Emission from the Circumgalactic Medium. Astrophysical Journal, 2019, 880, 28.	1.6	9
23	Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5580-5593.	1.6	13
24	Constraining scatter in the stellar mass–halo mass relation for haloes less massive than the Milky Way. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4916-4925.	1.6	7
25	Clustering constraints on the relative sizes of central and satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1805-1819.	1.6	11
26	UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from $z\hat{A}=0\hat{a}^{2}$ 10. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3143-3194.	1.6	659
27	ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	10
28	Dark matter halo properties versus local density and cosmic web location. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2101-2122.	1.6	22
29	Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction. Astrophysical Journal, 2019, 879, 36.	1.6	201
30	Reliable determination of contact angle from the height and volume of sessile drops. American Journal of Physics, 2019, 87, 28-32.	0.3	10
31	Differences in Halo Mass Accretion Rate Definitions between SPARTA and Consistent Trees. Research Notes of the AAS, 2019, 3, 169.	0.3	6
32	MultiDark-Galaxies: data release and first results. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5206-5231.	1.6	60
33	Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4411-4423.	1.6	57
34	The relationship between galaxy and dark matter halo size from zÂâ^¼Â3 to the present. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2714-2736.	1.6	86
35	Tidal stripping and post-merger relaxation of dark matter haloes: causes and consequences of mass-loss. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4038-4057.	1.6	11
36	Emission Line Ratios for the Circumgalactic Medium and the "Bimodal―Nature of Galaxies. Astrophysical Journal Letters, 2018, 866, L4.	3.0	11

#	Article	IF	CITATIONS
37	Demographics of Star-forming Galaxies since zÂâ^1/4Â2.5. I. The UVJ Diagram in CANDELS. Astrophysical Journal, 2018, 858, 100.	1.6	79
38	The most massive galaxies and black holes allowed by Î-CDM. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5382-5387.	1.6	50
39	Emission from the Ionized Gaseous Halos of Low-redshift Galaxies and Their Neighbors. Astrophysical Journal, 2018, 861, 34.	1.6	16
40	GOLDRUSH. II. Clustering of galaxies at <i>z</i> â^¼ 4–6 revealed with the half-million dropouts over the 100Âdeg2 area corresponding to 1ÂGpc3. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	104
41	A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time. Astrophysical Journal, 2018, 854, 36.	1.6	21
42	Recoiling supermassive black hole escape velocities from dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1526-1537.	1.6	7
43	Lensing is low: cosmology, galaxy formation or new physics?. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3024-3047.	1.6	150
44	Clustering of quasars in the first year of the SDSS-IV eBOSS survey: interpretation and halo occupation distribution. Monthly Notices of the Royal Astronomical Society, 2017, 468, 728-740.	1.6	32
45	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2054-2084.	1.6	63
46	Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools. Astronomical Journal, 2017, 154, 190.	1.9	100
47	Properties of dark matter haloes as a function of local environment density. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3834-3858.	1.6	44
48	PRIMUS: ONE- AND TWO-HALO GALACTIC CONFORMITY AT 0.2Â<ÂzÂ<Â1. Astrophysical Journal, 2017, 834, 87.	1.6	32
49	THE EVOLUTION OF STAR FORMATION HISTORIES OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 79.	1.6	99
50	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	1.6	50
51	Modelling galaxy clustering: halo occupation distribution versus subhalo matching. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3040-3058.	1.6	79
52	Is main-sequence galaxy star formation controlled by halo mass accretion?. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2592-2606.	1.6	81
53	Halo and subhalo demographics with Planck cosmological parameters: Bolshoi–Planck and MultiDark–Planck simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 893-916.	1.6	168
54	THE SPITZER-HETDEX EXPLORATORY LARGE-AREA SURVEY. Astrophysical Journal, Supplement Series, 2016, 224, 28.	3.0	65

#	Article	IF	CITATIONS
55	GALAXY THREE-POINT CORRELATION FUNCTIONS AND HALO/SUBHALO MODELS. Astrophysical Journal, 2016, 831, 3.	1.6	15
56	On the physical origin of galactic conformity. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2135-2145.	1.6	49
57	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1173-1187.	1.6	150
58	Sussing merger trees: stability and convergence. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1554-1568.	1.6	14
59	Connecting massive galaxies to dark matter haloes in BOSS – I. Is galaxy colour a stochastic process in high-mass haloes?. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1457-1475.	1.6	69
60	On the segregation of dark matter substructure. Monthly Notices of the Royal Astronomical Society, 2016, 455, 158-177.	1.6	41
61	HIERARCHICAL GALAXY GROWTH AND SCATTER IN THE STELLAR MASS–HALO MASS RELATION. Astrophysical Journal, 2016, 833, 2.	1.6	35
62	THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS. Astrophysical Journal, 2015, 810, 71.	1.6	524
63	AN INCREASING STELLAR BARYON FRACTION IN BRIGHT GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2015, 814, 95.	1.6	54
64	The bias of the submillimetre galaxy population: SMGs are poor tracers of the most-massive structures in the <i>z < /i > Ââ^1/4Â2 Universe. Monthly Notices of the Royal Astronomical Society, 2015, 452, 878-883.</i>	1.6	42
65	Galaxy Cluster Mass Reconstruction Project – II. Quantifying scatter and bias using contrasting mock catalogues. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1897-1920.	1.6	65
66	The galaxy stellar mass function at 3.5 ≤i>zà‰¤7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields. Astronomy and Astrophysics, 2015, 575, A96.	2.1	215
67	Predicting galaxy star formation rates via the co-evolution of galaxies and haloes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 651-662.	1.6	47
68	Evolution of the atomic and molecular gas content of galaxies in dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2015, 449, 477-493.	1.6	73
69	THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 â@½ <i>>z</i> à@½ <i>CANDELS. Astrophysical Journal, 2015, 799, 183.</i>	6,5 IN 1.6	253
70	A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION. Astrophysical Journal, 2015, 799, 32.	1.6	133
71	Faint dwarfs as a test of DM models: WDM versus CDM. Monthly Notices of the Royal Astronomical Society, 2015, 448, 792-803.	1.6	76
72	Using galaxy pairs to probe star formation during major halo mergers. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1546-1564.	1.6	25

#	Article	lF	Citations
73	ZFOURGE/CANDELS: ON THE EVOLUTION OF <i>M</i> * GALAXY PROGENITORS FROM <i>z</i> = 3 TO 0.5. Astrophysical Journal, 2015, 803, 26.	1.6	104
74	On the history and future of cosmic planet formation. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1811-1817.	1.6	46
75	Major mergers going Notts: challenges for modern halo finders. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3020-3029.	1.6	52
76	ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE <i>z</i> â ¹ / ₄ 1. Astrophysical Journal Letters, 2014, 797, L27.	3.0	37
77	Subhaloes gone Notts: the clustering properties of subhaloes. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3205-3221.	1.6	15
78	SUSSING MERGER TREES: the influence of the halo finder. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3488-3501.	1.6	36
79	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCE $\langle i \rangle z \langle i \rangle = 3$. Astrophysical Journal, 2014, 788, 28.	1.6	944
80	Sussing merger trees: the impact of halo merger trees on galaxy properties in a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4197-4210.	1.6	23
81	INTERPRETING SHORT GAMMA-RAY BURST PROGENITOR KICKS AND TIME DELAYS USING THE HOST GALAXY–DARK MATTER HALO CONNECTION. Astrophysical Journal, 2014, 792, 123.	1.6	52
82	Subhaloes gone Notts: subhaloes as tracers of the dark matter halo shape. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1197-1210.	1.6	14
83	MERGERS AND MASS ACCRETION FOR INFALLING HALOS BOTH END WELL OUTSIDE CLUSTER VIRIAL RADII. Astrophysical Journal, 2014, 787, 156.	1.6	101
84	SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES. Astrophysical Journal, 2014, 795, 123.	1.6	91
85	THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM <i>z</i> a 0-8. Astrophysical Journal, 2013, 770, 57.	1.6	1,633
86	THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE. Astrophysical Journal, 2013, 771, 30.	1.6	317
87	Sussing Merger Trees: The Merger Trees Comparison Project. Monthly Notices of the Royal Astronomical Society, 2013, 436, 150-162.	1.6	80
88	Subhaloes gone Notts: spin across subhaloes and finders. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2739-2747.	1.6	31
89	Structure finding in cosmological simulations: the state of affairs. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1618-1658.	1.6	138
90	Spatially unassociated galaxies contribute significantly to the blended submillimetre galaxy population: predictions for follow-up observations of ALMA sources. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2572-2581.	1.6	73

#	Article	IF	CITATIONS
91	Galaxies going MAD: the Galaxy-Finder Comparison Project. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2039-2052.	1.6	32
92	Streams going Notts: the tidal debris finder comparison project. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1537-1555.	1.6	32
93	IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING. Astrophysical Journal, Supplement Series, 2013, 208, 1.	3.0	18
94	USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME. Astrophysical Journal Letters, 2013, 777, L10.	3.0	116
95	RHAPSODY. II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS. Astrophysical Journal, 2013, 767, 23.	1.6	39
96	Disentangling satellite galaxy populations using orbit tracking in simulations. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2307-2316.	1.6	119
97	EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM <i>z</i> = 1 TO 0. Astrophysical Journal, 2013, 778, 93.	1.6	117
98	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. Astrophysical Journal, 2013, 763, 70.	1.6	52
99	THE INTEGRATED STELLAR CONTENT OF DARK MATTER HALOS. Astrophysical Journal, 2012, 746, 95.	1.6	101
100	Subhaloes going Notts: the subhalo-finder comparison project. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1200-1214.	1.6	132
101	Determination of surface tension from the measurement of internal pressure of mini soap bubbles. American Journal of Physics, 2011, 79, 1089-1093.	0.3	9
102	HOW COMMON ARE THE MAGELLANIC CLOUDS?. Astrophysical Journal, 2011, 733, 62.	1.6	107
103	A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER. Astrophysical Journal, 2011, 738, 45.	1.6	117
104	STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS. Astrophysical Journal, 2011, 743, 117.	1.6	89
105	Haloes gone MADâ~: The Halo-Finder Comparison Project. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2293-2318.	1.6	302
106	The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration. European Journal of Physics, 2011, 32, 1237-1244.	0.3	1
107	GALAXIES IN X-RAY GROUPS. I. ROBUST MEMBERSHIP ASSIGNMENT AND THE IMPACT OF GROUP ENVIRONMENTS ON QUENCHING. Astrophysical Journal, 2011, 742, 125.	1.6	118
108	A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS-HALO MASS RELATION FOR 0 < <i>>z</i> < 4. Astrophysical Journal, 2010, 717, 379-403.	1.6	783

PETER BEHROOZI

#	Article	IF	CITATIONS
109	The calming effect of oil on water. American Journal of Physics, 2007, 75, 407-414.	0.3	25
110	Microfluidic tuning of distributed feedback quantum cascade lasers. Optics Express, 2006, 14, 11660.	1.7	38
111	Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10