Guo-Li Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3601164/publications.pdf

Version: 2024-02-01

5244 8208 32,258 183 78 171 citations h-index g-index papers 197 197 197 36722 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Setting the clock of neural progenitor cells during mammalian corticogenesis. Seminars in Cell and Developmental Biology, 2023, 142, 43-53.	2.3	6
2	CYFIP1 Dosages Exhibit Divergent Behavioral Impact via Diametric Regulation of NMDA Receptor Complex Translation in Mouse Models of Psychiatric Disorders. Biological Psychiatry, 2022, 92, 815-826.	0.7	8
3	Applications of Brain Organoids for Infectious Diseases. Journal of Molecular Biology, 2022, 434, 167243.	2.0	17
4	Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nature Biotechnology, 2022, 40, 741-750.	9.4	7
5	Flexible encoding of objects and space in single cells of the dentate gyrus. Current Biology, 2022, 32, 1088-1101.e5.	1.8	18
6	Patterning of brain organoids derived from human pluripotent stem cells. Current Opinion in Neurobiology, 2022, 74, 102536.	2.0	13
7	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	1.4	5
8	What Is the Relationship Between Hippocampal Neurogenesis Across Different Stages of the Lifespan?. Frontiers in Neuroscience, 2022, 16 , .	1.4	13
9	3D spatial genome organization in the nervous system: From development and plasticity to disease. Neuron, 2022, 110, 2902-2915.	3.8	10
10	Molecular landscapes of human hippocampal immature neurons across lifespan. Nature, 2022, 607, 527-533.	13.7	116
11	Modeling neurological disorders using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 4-14.	2.3	23
12	Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Molecular Psychiatry, 2021, 26, 1346-1360.	4.1	22
13	Evaluating Neurodevelopmental Consequences of Perinatal Exposure to Antiretroviral Drugs: Current Challenges and New Approaches. Journal of NeuroImmune Pharmacology, 2021, 16, 113-129.	2.1	26
14	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	1.0	15
15	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	3.0	7
16	Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nature Communications, 2021, 12, 1398.	5.8	17
17	Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron, 2021, 109, 1150-1167.e6.	3.8	18
18	Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127906.	1.0	15

#	Article	IF	Citations
19	Seq-ing out cell types across the isocortex and hippocampal formation. Cell, 2021, 184, 3083-3085.	13.5	3
20	Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell, 2021, 28, 1657-1670.e10.	5.2	72
21	High-Affinity Chimeric Antigen Receptor With Cross-Reactive scFv to Clinically Relevant EGFR Oncogenic Isoforms. Frontiers in Oncology, 2021, 11, 664236.	1.3	14
22	Ontogeny of adult neural stem cells in the mammalian brain. Current Topics in Developmental Biology, 2021, 142, 67-98.	1.0	27
23	Pluripotent stem cell–derived brain-region-specific organoids. , 2021, , 1-43.		0
24	PUS7: a targetable epitranscriptomic regulator of glioblastoma growth. Trends in Pharmacological Sciences, 2021, 42, 976-978.	4.0	10
25	Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell, 2021, 28, 2035-2036.	5.2	8
26	Loss of chromatin modulator Dpy30 compromises proliferation and differentiation of postnatal neural stem cells. Journal of Molecular Cell Biology, 2020, 12, 2-3.	1.5	3
27	A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	13.5	529
28	m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron, 2020, 105, 293-309.e5.	3.8	96
29	Adult neurogenesis and the dentate gyrus: Predicting function from form. Behavioural Brain Research, 2020, 379, 112346.	1.2	22
30	The epitranscriptome in stem cell biology and neural development. Neurobiology of Disease, 2020, 146, 105139.	2.1	32
31	Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions. Brain Sciences, 2020, 10, 909.	1.1	25
32	Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell, 2020, 27, 937-950.e9.	5.2	314
33	Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Frontiers in Microbiology, 2020, 11, 598203.	1.5	27
34	Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nature Protocols, 2020, 15, 4000-4033.	5 . 5	89
35	Modeling traumatic brain injury with human brain organoids. Current Opinion in Biomedical Engineering, 2020, 14, 52-58.	1.8	15
36	Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell, 2020, 26, 766-781.e9.	5 . 2	268

#	Article	IF	Citations
37	Developmental basis of Zika virus-induced neuropathology. , 2020, , 79-97.		O
38	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	4.5	110
39	Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537.	2.9	33
40	Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. Journal of Neuroscience, 2020, 40, 2015-2024.	1.7	6
41	Modeling Human Cytomegalovirus-Induced Microcephaly in Human iPSC-Derived Brain Organoids. Cell Reports Medicine, 2020, 1, 100002.	3.3	67
42	Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. Advances in Neurobiology, 2020, 25, 237-257.	1.3	6
43	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	0.8	88
44	Interplay between a Mental Disorder Risk Gene and Developmental Polarity Switch of GABA Action Leads to Excitation-Inhibition Imbalance. Cell Reports, 2019, 28, 1419-1428.e3.	2.9	23
45	Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. Journal of Virology, 2019, 93, .	1.5	45
46	Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. Annual Review of Neuroscience, 2019, 42, 249-269.	5.0	41
47	FMRP Modulates Neural Differentiation through m6A-Dependent mRNA Nuclear Export. Cell Reports, 2019, 28, 845-854.e5.	2.9	188
48	Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nature Genetics, 2019, 51, 1252-1262.	9.4	139
49	Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras. Cell Stem Cell, 2019, 25, 462-472.	5.2	62
50	Kinase network dysregulation in a human induced pluripotent stem cell model of DISC1 schizophrenia. Molecular Omics, 2019, 15, 173-188.	1.4	33
51	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	1.2	385
52	A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell, 2019, 177, 654-668.e15.	13.5	186
53	Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews, 2019, 148, 239-251.	6.6	83
54	TMOD-13. MODELING THE GENETIC, TRANSCRIPTOMIC, AND CELLULAR HETEROGENEITY OF GLIOBLASTOMA USING TUMOR ORGANOIDS. Neuro-Oncology, 2019, 21, vi265-vi265.	0.6	0

#	Article	IF	CITATIONS
55	TMOD-26. MODELING GLIOBLASTOMA BY IMPLANTATION OF INTACT PATIENT-DERIVED ORGANOIDS INTO RODENT BRAINS. Neuro-Oncology, 2019, 21, vi268-vi268.	0.6	O
56	TMOD-25. GLIOBLASTOMA ORGANOIDS: A MODEL SYSTEM FOR PATIENT-SPECIFIC THERAPEUTIC TESTING. Neuro-Oncology, 2019, 21, vi268-vi268.	0.6	0
57	A previously undetected pathology of Zika virus infection. Nature Medicine, 2018, 24, 258-259.	15.2	2
58	Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13, 565-580.	5.5	335
59	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	2.3	69
60	Coupling Neurogenesis to Circuit Formation. Cell, 2018, 173, 288-290.	13.5	1
61	Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron, 2018, 97, 313-325.e6.	3.8	292
62	Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Molecular and Cellular Proteomics, 2018, 17, 349-356.	2.5	19
63	Radial glial cells in the adult dentate gyrus: what are they and where do they come from?. F1000Research, 2018, 7, 277.	0.8	65
64	m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 2018, 563, 249-253.	13.7	354
65	Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell, 2018, 23, 444-452.e4.	5.2	64
66	Epitranscriptomes in the Adult Mammalian Brain: Dynamic Changes Regulate Behavior. Neuron, 2018, 99, 243-245.	3.8	24
67	In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biology, 2018, 16, e2005211.	2.6	30
68	Synaptic dysfunction in complex psychiatric disorders: from genetics to mechanisms. Genome Medicine, 2018, 10, 9.	3.6	44
69	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	3.1	128
70	m 6 A facilitates hippocampusâ€dependent learning and memory through Ythdf1. FASEB Journal, 2018, 32, 787.6.	0.2	1
71	Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron, 2017, 93, 560-573.e6.	3.8	221
72	Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nature Neuroscience, 2017, 20, 476-483.	7.1	218

#	Article	ΙF	Citations
73	An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron, 2017, 94, 337-346.e6.	3.8	130
74	Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Human Molecular Genetics, 2017, 26, 2634-2648.	1.4	19
75	How does Zika virus cause microcephaly?. Genes and Development, 2017, 31, 849-861.	2.7	124
76	Sporadic ALS Astrocytes Induce Neuronal Degeneration InÂVivo. Stem Cell Reports, 2017, 8, 843-855.	2.3	105
77	Enhancing oligodendrocyte differentiation by transient transcription activation via DNA nanoparticle-mediated transfection. Acta Biomaterialia, 2017, 54, 249-258.	4.1	8
78	Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge), 2017, 144, 952-957.	1.2	201
79	DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron, 2017, 96, 1041-1054.e5.	3.8	109
80	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	13.5	567
81	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	5.2	163
82	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	7.1	85
83	Methylated cis-regulatory elements mediate KLF4-dependent gene transactivation and cell migration. ELife, 2017, 6, .	2.8	39
84	Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biology, 2017, 15, e2001246.	2.6	61
85	A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 362-376.	0.9	195
86	Stem cells take the stairs. Journal of Biological Chemistry, 2017, 292, 19605-19606.	1.6	0
87	Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Neuron, 2016, 91, 384-396.	3.8	63
88	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	5.2	103
89	Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nature Communications, $2016, 7, .$	5.8	84
90	Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell, 2016, 18, 587-590.	5.2	1,125

#	Article	lF	CITATIONS
91	Patient iPSCs: a new discovery tool for Smith-Lemli-Opitz syndrome. Nature Medicine, 2016, 22, 343-344.	15.2	2
92	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	13.5	1,680
93	Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018937.	2.3	95
94	A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science, 2016, 354, .	6.0	266
95	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	15.2	581
96	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	6.5	155
97	The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nature Communications, 2016, 7, 10965.	5.8	95
98	Epigenetic regulation of axonal regenerative capacity. Epigenomics, 2016, 8, 1429-1442.	1.0	33
99	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	5.8	106
100	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	4.9	299
101	Neural stem cells attacked by Zika virus. Cell Research, 2016, 26, 753-754.	5.7	20
102	Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus. Stem Cells, 2016, 34, 997-1010.	1.4	103
103	Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019026.	2.3	146
104	Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression. Molecular Cell, 2016, 61, 153-160.	4.5	74
105	Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Molecular and Cellular Neurosciences, 2016, 73, 52-62.	1.0	66
106	Diversity of Neural Precursors in the Adult Mammalian Brain. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018838.	2.3	42
107	Modeling psychiatric disorders with patient-derived iPSCs. Current Opinion in Neurobiology, 2016, 36, 118-127.	2.0	72
108	DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats. Frontiers in Systems Neuroscience, 2015, 9, 93.	1.2	14

#	Article	IF	Citations
109	Neuroepigenetics: Introduction to the special issue on epigenetics in neurodevelopment and neurological diseases. Experimental Neurology, 2015, 268, 1-2.	2.0	1
110	Rheb1 mediates DISC1-dependent regulation of new neuron development in the adult hippocampus. Neurogenesis (Austin, Tex), 2015, 2, e1081715.	1.5	9
111	Experience Matters: Enrichment Remodels Synaptic Inputs to Adult-Born Neurons. Neuron, 2015, 85, 659-661.	3.8	2
112	Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9484-9489.	3.3	109
113	Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 2015, 18, 836-843.	7.1	164
114	Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nature Neuroscience, 2015, 18, 536-544.	7.1	160
115	Molecular Toggle Switch of Histone Demethylase LSD1. Molecular Cell, 2015, 57, 949-950.	4.5	12
116	Seeking a Roadmap toward Neuroepigenetics. Neuron, 2015, 86, 12-15.	3.8	5
117	Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell, 2015, 17, 385-395.	5.2	650
118	Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation. Nature Neuroscience, 2015, 18, 1722-1724.	7.1	35
119	DNA damage and repair regulate neuronal gene expression. Cell Research, 2015, 25, 993-994.	5.7	17
120	Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 2015, 17, 360-372.	5.2	680
121	Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 2015, 10, 262-271.	0.7	25
122	A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation. Molecular Brain, 2015, 8, 52.	1.3	25
123	A diametric mode of neuronal circuitry-neurogenesis coupling in the adult hippocampus via parvalbumin interneurons. Neurogenesis (Austin, Tex), 2014, 1, e29949.	1.5	3
124	Reprogram to pluripotency: a new logic and a chemical cocktail. National Science Review, 2014, 1, 6-7.	4.6	1
125	Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Frontiers in Biology, 2014, 9, 66-74.	0.7	26
126	Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience, 2014, 17, 215-222.	7.1	663

#	Article	IF	Citations
127	Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nature Neuroscience, 2014, 17, 1463-1475.	7.1	49
128	DNA modifications in the mammalian brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130512.	1.8	29
129	Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junctions and Polarity. Cell Stem Cell, 2014, 15, 79-91.	5.2	238
130	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	13.7	471
131	Functions and Dysfunctions of Adult Hippocampal Neurogenesis. Annual Review of Neuroscience, 2014, 37, 243-262.	5.0	344
132	Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. ELife, 2014, 3, .	2.8	100
133	Seamless Reconstruction of Intact Adult-Born Neurons by Serial End-Block Imaging Reveals Complex Axonal Guidance and Development in the Adult Hippocampus. Journal of Neuroscience, 2013, 33, 11400-11411.	1.7	62
134	Parvalbumin interneurons mediate neuronal circuitry–neurogenesis coupling in the adult hippocampus. Nature Neuroscience, 2013, 16, 1728-1730.	7.1	191
135	DNA Modifications and Neurological Disorders. Neurotherapeutics, 2013, 10, 556-567.	2.1	40
136	mTOR Inhibition Ameliorates Cognitive and Affective Deficits Caused by Disc1 Knockdown in Adult-Born Dentate Granule Neurons. Neuron, 2013, 77, 647-654.	3.8	94
137	Secreted Frizzled-Related Protein 3 Regulates Activity-Dependent Adult Hippocampal Neurogenesis. Cell Stem Cell, 2013, 12, 215-223.	5.2	173
138	Class 3 Semaphorin Mediates Dendrite Growth in Adult Newborn Neurons through Cdk5/FAK Pathway. PLoS ONE, 2013, 8, e65572.	1.1	47
139	DNA methylation presents distinct binding sites for human transcription factors. ELife, 2013, 2, e00726.	2.8	292
140	Life or death: developing cortical interneurons make their own decision. EMBO Journal, 2012, 31, 4373-4374.	3.5	5
141	Using human induced pluripotent stem cells for modeling schizophrenia, a psychiatric disorder. Drug Discovery Today: Disease Models, 2012, 9, e179-e184.	1.2	1
142	Time-dependent involvement of adult-born dentate granule cells in behavior. Behavioural Brain Research, 2012, 227, 470-479.	1.2	56
143	Interplay between DISC1 and GABA Signaling Regulates Neurogenesis in Mice and Risk for Schizophrenia. Cell, 2012, 148, 1051-1064.	13.5	196
144	Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Molecular Brain, 2012, 5, 17.	1.3	204

#	Article	IF	Citations
145	Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489, 150-154.	13.7	463
146	A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Current Opinion in Neurobiology, 2012, 22, 754-761.	2.0	157
147	Modification of hippocampal circuitry by adult neurogenesis. Developmental Neurobiology, 2012, 72, 1032-1043.	1.5	113
148	Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders. Frontiers in Biology, 2012, 7, 179-188.	0.7	6
149	Retroviral Labeling and Imaging of Newborn Neurons in the Adult Brain. , 2012, , 201-219.		0
150	Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell, 2011, 145, 423-434.	13.5	1,196
151	In Vivo Clonal Analysis Reveals Self-Renewing and Multipotent Adult Neural Stem Cell Characteristics. Cell, 2011, 145, 1142-1155.	13.5	749
152	Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 2011, 14, 1345-1351.	7.1	601
153	Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron, 2011, 70, 687-702.	3.8	2,193
154	Interaction between FEZ1 and DISC1 in Regulation of Neuronal Development and Risk for Schizophrenia. Neuron, 2011, 72, 559-571.	3.8	89
155	Postnatal Neurogenesis in the Human Forebrain: From Two Migratory Streams to Dribbles. Cell Stem Cell, 2011, 9, 385-386.	5.2	17
156	Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience, 2011, 33, 1087-1093.	1.2	87
157	Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurology, 2011, 6, 363-373.	0.9	37
158	Cellular Reprogramming: Recent Advances in Modeling Neurological Diseases. Journal of Neuroscience, 2011, 31, 16070-16075.	1.7	25
159	Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neuroscience, 2010, 13, 541-550.	7.1	200
160	Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience, 2010, 13, 1338-1344.	7.1	302
161	Adult neurogenesis as a cellular model to study schizophrenia. Cell Cycle, 2010, 9, 636-637.	1.3	18
162	Roles of channels and receptors in the growth cone during PNS axonal regeneration. Experimental Neurology, 2010, 223, 38-44.	2.0	38

#	Article	IF	CITATIONS
163	Axonal Protective Effects of the Myelin-Associated Glycoprotein. Journal of Neuroscience, 2009, 29, 630-637.	1.7	121
164	DISC1 Partners with GSK3β in Neurogenesis. Cell, 2009, 136, 990-992.	13.5	56
165	DISC1 Regulates New Neuron Development in the Adult Brain via Modulation of AKT-mTOR Signaling through KIAA1212. Neuron, 2009, 63, 761-773.	3.8	301
166	Neuronal Activity–Induced Gadd45b Promotes Epigenetic DNA Demethylation and Adult Neurogenesis. Science, 2009, 323, 1074-1077.	6.0	846
167	Synaptic integration and plasticity of new neurons in the adult hippocampus. Journal of Physiology, 2008, 586, 3759-3765.	1.3	204
168	Development of neural stem cell in the adult brain. Current Opinion in Neurobiology, 2008, 18, 108-115.	2.0	278
169	beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Molecular Brain, 2008, 1, 10.	1.3	66
170	A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab on A Chip, 2008, 8, 227.	3.1	138
171	Using chips to simulate the brain as a tool to investigate brain development. Expert Review of Neurotherapeutics, 2008, 8, 1001-1004.	1.4	1
172	Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14157-14162.	3.3	186
173	Adult Neurogenesis, Mental Health, and Mental Illness: Hope or Hype?: Figure 1 Journal of Neuroscience, 2008, 28, 11785-11791.	1.7	225
174	GABA sets the tempo for activity-dependent adult neurogenesis. Trends in Neurosciences, 2007, 30, 1-8.	4.2	330
175	A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain. Neuron, 2007, 54, 559-566.	3.8	813
176	Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain. Cell, 2007, 130, 1146-1158.	13.5	576
177	Adult Neurogenesis and Hippocampal Memory Function: New Cells, More Plasticity, New Memories?. Neurosurgery Clinics of North America, 2007, 18, 105-113.	0.8	88
178	GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006, 439, 589-593.	13.7	1,139
179	New directions in neuroregeneration. Expert Opinion on Biological Therapy, 2006, 6, 735-738.	1.4	16
180	Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus. Journal of Neuroscience, 2006, 26, 3-11.	1.7	1,073

#	Article	IF	CITATIONS
181	ADULT NEUROGENESIS IN THE MAMMALIAN CENTRAL NERVOUS SYSTEM. Annual Review of Neuroscience, 2005, 28, 223-250.	5.0	1,642
182	XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nature Neuroscience, 2005, 8, 730-735.	7.1	151
183	Focal adhesion kinase in netrin-1 signaling. Nature Neuroscience, 2004, 7, 1204-1212.	7.1	196