Xiujian Zhao

List of Publications by Citations

Source: https://exaly.com/author-pdf/3600991/xiujian-zhao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 465 114 17,753 h-index g-index citations papers 481 20,021 7.05 5.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
465	The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13871	-1 ³ 3 <mark>8</mark> 79	1026
464	Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16414-7	16.4	830
463	Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. <i>Thin Solid Films</i> , 2000 , 379, 7-14	2.2	476
462	Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. <i>Journal of Catalysis</i> , 2003 , 217, 69-69	7.3	468
461	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. <i>Materials Horizons</i> , 2018 , 5, 9-27	14.4	435
460	Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. <i>CheM</i> , 2019 , 5, 18-50	16.2	365
459	Photocatalytic activity of nanometer TiO2 thin films prepared by the solgel method. <i>Materials Chemistry and Physics</i> , 2001 , 69, 25-29	4.4	301
458	Synergetic Effect between Photocatalysis on TiO2 and Thermocatalysis on CeO2 for Gas-Phase Oxidation of Benzene on TiO2/CeO2 Nanocomposites. <i>ACS Catalysis</i> , 2015 , 5, 3278-3286	13.1	242
457	Understanding of Electrochemical Mechanisms for CO Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). <i>ACS Nano</i> , 2017 , 11, 10825-10833	16.7	236
456	Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. Journal of Photochemistry and Photobiology A: Chemistry, 2010 , 216, 149-155	4.7	229
455	Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO(2) and ZnO. <i>Langmuir</i> , 2010 , 26, 591-7	4	228
454	Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment. <i>Journal of Molecular Catalysis A</i> , 2006 , 253, 112-118		227
453	Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO2 powders. <i>Journal of Molecular Catalysis A</i> , 2006 , 246, 176-184		201
452	Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6736	13	181
451	Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. <i>Langmuir</i> , 2008 , 24, 8351-7	4	178
450	Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8751-60	3.6	172
449	Preparation and characterization of super-hydrophilic porous TiO2 coating films. <i>Materials Chemistry and Physics</i> , 2001 , 68, 253-259	4.4	167

(2009-2006)

448	Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 182, 121-127	4.7	165
447	Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. <i>Environmental Science & Environmental Science & Envir</i>	0 ¹ 60.3	163
446	Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. <i>Materials Research Bulletin</i> , 2000 , 35, 1293-1301	5.1	153
445	Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 14981-7	9.5	140
444	Preparation, Microstructure and Photocatalytic Activity of the Porous TiO2 Anatase Coating by Sol-Gel Processing. <i>Journal of Sol-Gel Science and Technology</i> , 2000 , 17, 163-171	2.3	133
443	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals Stabilized in Glasses for Light-Emitting Applications. <i>Advanced Optical Materials</i> , 2019 , 7, 1801663	8.1	132
442	Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21941-21948	13	129
441	Photocatalytic mechanism of TiO2IIeO2 films prepared by magnetron sputtering under UV and visible light. <i>Surface Science</i> , 2005 , 595, 203-211	1.8	126
440	Precipitation and Optical Properties of CsPbBr3 Quantum Dots in Phosphate Glasses. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2875-2877	3.8	124
439	Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. <i>Journal of Molecular Catalysis A</i> , 2005 , 227, 75-80		124
438	Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films. <i>Materials Research Bulletin</i> , 2001 , 36, 97-107	5.1	124
437	Development of multifunctional photoactive self-cleaning glasses. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1424-1430	3.9	120
436	Effects of PAA additive and temperature on morphology of calcium carbonate particles. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 681-689	3.3	117
435	Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials, 2009, 169, 1112-8	12.8	116
434	Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. <i>Applied Catalysis A: General</i> , 2003 , 255, 309-320	5.1	111
433	The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. <i>Materials Chemistry and Physics</i> , 2007 , 106, 350-353	4.4	109
432	Coupling Oxygen Ion Conduction to Photocatalysis in Mesoporous Nanorod-like Ceria Significantly Improves Photocatalytic Efficiency. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14050-14057	3.8	108
431	Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films. <i>Acta Materialia</i> , 2009 , 57, 278-285	8.4	108

430	Metal Support Interaction in Pt Nanoparticles Partially Confined in the Mesopores of Microsized Mesoporous CeO2 for Highly Efficient Purification of Volatile Organic Compounds. <i>ACS Catalysis</i> , 2016 , 6, 418-427	13.1	106
429	N-doped carbon-dots for luminescent solar concentrators. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2145	5 3-214	1 50 6
428	Linear and Nonlinear Optical Properties of Ag Nanowire Polarizing Glass. <i>Advanced Functional Materials</i> , 2006 , 16, 2405-2408	15.6	102
427	Facile Fabrication of 3D-Ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9706-97	₹182	101
426	Durable Self-Cleaning Surfaces with Superhydrophobic and Highly Oleophobic Properties. <i>Langmuir</i> , 2019 , 35, 8404-8412	4	99
425	Preparation and enhanced photocatalytic activity of TiO[hanocrystals with internal pores. <i>ACS Applied Materials & Description of the Communication of the C</i>	9.5	95
424	Low-temperature preparation and visible-light-induced catalytic activity of anatase FN-codoped TiO2. <i>Journal of Molecular Catalysis A</i> , 2007 , 277, 119-126		95
423	Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1\(\text{QCoxO} \) (0. <i>Applied Physics Letters</i> , 2007 , 91, 031908	3.4	93
422	One-dimensional silver nanowires synthesized by self-seeding polyol process. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	91
421	Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Materials Letters, 2004, 58, 1565-1570	3.3	89
420	2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5383-5389	13	88
419	UVII is Infrared Light Driven Thermocatalytic Activity of Octahedral Layered Birnessite Nanoflowers Enhanced by a Novel Photoactivation. <i>Advanced Functional Materials</i> , 2016 , 26, 4518-4526	15.6	86
418	Extremely efficient full solar spectrum light driven thermocatalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst. <i>Applied Catalysis B: Environmental</i> , 2015 , 174-175, 496-503	21.8	85
417	The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {0 0 1} facets on photocatalysis for the photocatalytic purification of VOCs. <i>Applied Catalysis B: Environmental</i> , 2016 , 181, 625-634	21.8	83
416	Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction. <i>Journal of Crystal Growth</i> , 2004 , 261, 566-570	1.6	82
415	The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1-10	6.4	80
414	Synergetic effect between photocatalysis on TiO2 and solar light-driven thermocatalysis on MnOx for benzene purification on MnOx/TiO2 nanocomposites. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5509	¹ 3516	78
413	Proposing the prospects of TiCN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 32937-32943	3.6	78

412	The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films. <i>Journal of Materials Science Letters</i> , 2001 , 20, 1745-1748		78	
411	Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films. <i>Journal of Materials Science Letters</i> , 2000 , 19, 1015-1017		78	
410	Photocatalytic Activity and Characterization of the Sol-Gel Derived Pb-Doped TiO2 Thin Films. <i>Journal of Sol-Gel Science and Technology</i> , 2002 , 24, 39-48	2.3	72	•
409	Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification. <i>Nanoscale</i> , 2015 , 7, 2633-40	7.7	71	
408	The Effect of SiO2 Addition on the Grain Size and Photocatalytic Activity of TiO2 Thin Films. <i>Journal of Sol-Gel Science and Technology</i> , 2002 , 24, 95-103	2.3	69	
407	Effect of heat treatment on the UVDisNIR and PL spectra of TiO2 films. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2005 , 148, 158-163	1.7	69	
406	Solar-Light-Driven CO2 Reduction by CH4 on Silica-Cluster-Modified Ni Nanocrystals with a High Solar-to-Fuel Efficiency and Excellent Durability. <i>Advanced Energy Materials</i> , 2018 , 8, 1702472	21.8	68	
405	The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. <i>Materials Chemistry and Physics</i> , 2005 , 90, 207-212	4.4	67	
404	Formation of AgI/TiO2 nanocomposite leads to excellent thermochromic reversibility and photostability. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9263		66	
403	Low temperature photoluminescence properties of CsPbBr quantum dots embedded in glasses. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17349-17355	3.6	65	
402	Solgel fabrication of compact, crack-free alumina film. <i>Materials Research Bulletin</i> , 2007 , 42, 600-608	5.1	62	
401	Synthesis, characterization and its visible-light-induced photocatalytic property of carbon doped ZnO. <i>Materials Letters</i> , 2009 , 63, 1747-1749	3.3	61	
400	UV-Visible-Infrared Light Driven Thermocatalysis for Environmental Purification on Ramsdellite MnO Hollow Spheres Considerably Promoted by a Novel Photoactivation. <i>ACS Applied Materials & Mamp; Interfaces</i> , 2017 , 9, 2350-2357	9.5	59	
399	Photothermocatalytic Synergetic Effect Leads to High Efficient Detoxification of Benzene on TiO2 and Pt/TiO2 Nanocomposite. <i>ChemCatChem</i> , 2010 , 2, 1082-1087	5.2	59	
398	Porous W-doped VO2 films with simultaneously enhanced visible transparency and thermochromic properties. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 77, 85-93	2.3	58	
397	Synthesis and characterization of CuAlO(2) and AgAlO(2) delafossite oxides through low-temperature hydrothermal methods. <i>Inorganic Chemistry</i> , 2014 , 53, 4106-16	5.1	58	
396	IceWater Quenching Induced Ti3+ Self-doped TiO2 with Surface Lattice Distortion and the Increased Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 19836-19848	3.8	57	
395	Efficient UVIIis-infrared light-driven catalytic abatement of benzene on amorphous manganese oxide supported on anatase TiO2 nanosheet with dominant {001} facets promoted by a photothermocatalytic synergetic effect. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 494-504	21.8	56	

394	Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. <i>Organic Electronics</i> , 2018 , 62, 284-289	3.5	55
393	Low Temperature Preparation and Characterization of N-doped and N-S-codoped TiO2 by Solgel Route. <i>Catalysis Letters</i> , 2007 , 118, 231-237	2.8	55
392	Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. <i>Applied Surface Science</i> , 2019 , 463, 1148-1153	6.7	55
391	Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators. <i>Chemical Communications</i> , 2019 , 55, 7486-7489	5.8	54
390	Defects lead to a massive enhancement in the UV-Vis-IR driven thermocatalytic activity of Co3O4 mesoporous nanorods. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 7194-7205	13	53
389	Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. <i>Progress in Organic Coatings</i> , 2009 , 64, 268-273	4.8	53
388	Crystallization behavior of 80GeS2 ? 20Ga2S3 chalcogenide glass. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 713-720	2.6	53
387	UVIIis-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 751-760	21.8	52
386	Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 303-310	21.8	51
385	Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 555-564	21.8	51
384	The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. <i>Nanoscale</i> , 2014 , 6, 15048-58	7.7	51
383	CTAB-assisted synthesis of mesoporous FM-codoped TiO2 powders with high visible-light-driven catalytic activity and adsorption capacity. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1936-1942	3.3	51
382	Solar-light-driven CO2 reduction by methane on Pt nanocrystals partially embedded in mesoporous CeO2 nanorods with high light-to-fuel efficiency. <i>Green Chemistry</i> , 2018 , 20, 2857-2869	10	50
381	Structural, electrical and optical properties of p-type transparent conducting SnO2:Al film derived from thermal diffusion of Al/SnO2/Al multilayer thin films. <i>Acta Materialia</i> , 2010 , 58, 6243-6248	8.4	50
380	Raman scattering studies of the GeS2©a2S3©sCl glassy system. <i>Solid State Communications</i> , 2005 , 133, 327-332	1.6	50
379	Evidence of network demixing in GeS2ta2S3 chalcogenide glasses: A phase transformation study. Journal of Solid State Chemistry, 2011 , 184, 584-588	3.3	49
378	The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2006 , 134, 27-31	3.1	49
377	Second-harmonic generation in GeAsB glasses by electron beam irradiation and analysis of the poling mechanism. <i>Optics Communications</i> , 2001 , 198, 187-192	2	49

(2008-2015)

376	A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. <i>New Journal of Chemistry</i> , 2015 , 39, 5470-5476	3.6	48	
375	Densely populated mesopores in microcuboid CeO2 crystal leading to a significant enhancement of catalytic activity. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 728-734	13	48	
374	Structure and Electronic Properties of a Continuous Random Network Model of an Amorphous Zeolitic Imidazolate Framework (a-ZIF). <i>Journal of Physical Chemistry C</i> , 2016 , 120, 15362-15368	3.8	47	
373	Pb-Based Halide Perovskites: Recent Advances in Photo(electro)catalytic Applications and Looking Beyond. <i>Advanced Functional Materials</i> , 2020 , 30, 1909667	15.6	46	
372	Formation of Surface Complex Leading to Efficient Visible Photocatalytic Activity and Improvement of Photostabilty of ZnO. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16188-16192	3.8	46	
371	High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-vis-IR irradiation. <i>Energy and Environmental Science</i> , 2019 , 12, 2581-2	5 કે ેઈ ⁴	45	
370	Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 27437-45	3.6	45	
369	UVII is-infrared light-driven thermocatalytic abatement of benzene on Fe doped OMS-2 nanorods enhanced by a novel photoactivation. <i>Chemical Engineering Journal</i> , 2018 , 332, 205-215	14.7	45	
368	Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 1910-191	4 ^{5.7}	45	
367	Highly selective photocatalytic and sensing properties of 2D-ordered dome films of nano titania and nano Ag2+ doped titania. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1469-1476		44	
366	Raman scattering studies of the GeIh sulfide glasses. Solid State Communications, 2006, 137, 408-412	1.6	44	
365	Raman spectroscopic study on the microstructure of GeS2La2S3LCl glasses. <i>Journal of Molecular Structure</i> , 2004 , 697, 23-27	3.4	44	
364	Fabrication of high-performance luminescent solar concentrators using N-doped carbon dots/PMMA mixed matrix slab. <i>Organic Electronics</i> , 2018 , 63, 237-243	3.5	44	
363	Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12373-12387	7.1	42	
362	Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 °C. RSC Advances, 2015 , 5, 49280-49286	3.7	42	
361	Second-harmonic generation in Ge(20)As(25)S(55) glass irradiated by an electron beam. <i>Optics Letters</i> , 2001 , 26, 1347-9	3	42	
360	Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2019 , 39, 1-57	16.4	41	
359	Efficient Visible-Light-Induced Photocatalytic Activity of a 3D-Ordered Titania Hybrid Photocatalyst with a Core/Shell Structure of Dye-Containing Polymer/Titania. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14973-14979	3.8	41	

358	Cu doped OL-1 nanoflower: A UVIIis-infrared light-driven catalyst for gas-phase environmental purification with very high efficiency. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 521-529	21.8	40
357	Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid). Journal of Solid State Chemistry, 2004 , 177, 3368-3374	3.3	40
356	Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane) Drea copolymers. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5486-5494	13	39
355	Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films spray-deposited on glass substrates. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2557-2561	3.9	39
354	Growth of free-standing TiO2 nanorod arrays and its application in CdS quantum dots-sensitized solar cells. <i>Chemical Physics Letters</i> , 2011 , 508, 130-133	2.5	39
353	Crystallite structure, surface morphology and optical properties of In2O3IIiO2 composite thin films by solgel method. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 151, 179-186	3.1	39
352	Highly efficient UV-Vis-infrared catalytic purification of benzene on CeMnxOy/TiO2 nanocomposite, caused by its high thermocatalytic activity and strong absorption in the full solar spectrum region. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9890-9899	13	38
351	Large and ultrafast third-order optical nonlinearity of GeS2ta2S3tdS chalcogenide glass. <i>Chemical Physics Letters</i> , 2004 , 399, 230-233	2.5	38
350	Formation and optical properties of ZnSe and ZnS nanocrystals in glasses. <i>Journal of Non-Crystalline Solids</i> , 2015 , 429, 79-82	3.9	37
349	Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering. <i>Infrared Physics and Technology</i> , 2016 , 75, 22-25	2.7	37
348	Ultralow density, hollow silica foams produced through interfacial reaction and their exceptional properties for environmental and energy applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 12041		37
347	A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: Indirect interfacial charge transfer. <i>Electrochimica Acta</i> , 2010 , 55, 4062-4070	6.7	37
346	Study on the structure dependent ultrafast third-order optical nonlinearity of GeS2Ih2S3 chalcogenide glasses. <i>Optics Communications</i> , 2007 , 270, 373-378	2	37
345	Theoretical Kinetic Analysis of Heterogeneous Photocatalysis: The Effects of Surface Trapping and Bulk Recombination through Defects. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16037-16042	3.8	36
344	Study on the third and second-order nonlinear optical properties of GeS(2)-Ga(2)S3-AgCl chalcohalide glasses. <i>Optics Express</i> , 2007 , 15, 2398-408	3.3	36
343	Single-Metal Atoms Supported on MBenes for Robust Electrochemical Hydrogen Evolution. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 12, 9261-9267	9.5	36
342	High-performance UV photodetection of unique ZnO nanowires from zinc carbonate hydroxide nanobelts. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 5861-7	9.5	35
341	Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 176, 427-434	6.4	35

(2014-2017)

340	The synergetic effect of V and Fe-co-doping in TiO2 studied from the DFT + U first-principle calculation. <i>Applied Surface Science</i> , 2017 , 399, 654-662	6.7	34
339	Boron doping effects in electrochromic properties of NiO films prepared by solgel. <i>Solar Energy</i> , 2009 , 83, 2103-2108	6.8	34
338	Temperature effect on the photocatalytic degradation of methyl orange under UV-vis light irradiation. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2010 , 25, 210-213	1	34
337	Glass formation and crystallization in alkali-containing fluoride glasses. <i>Journal of Non-Crystalline Solids</i> , 1987 , 95-96, 487-494	3.9	34
336	Co3O4/TiO2 Nanocomposite Formation Leads to Improvement in Ultravioletly is ible-Infrared-Driven Thermocatalytic Activity Due to Photoactivation and Photocatalysis Thermocatalysis Synergetic Effect. ACS Sustainable Chemistry and Engineering, 2018,	8.3	34
335	6, 16503-16514 CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays. <i>Dalton Transactions</i> , 2013 , 42, 14726-32	4.3	33
334	The effect of sputtering power on the structure and photocatalytic activity of TiO2 films prepared by magnetron sputtering. <i>Thin Solid Films</i> , 2009 , 517, 6569-6575	2.2	33
333	Charge carrier interfacial transfer pathways from TiO2 and Au/TiO2 nanorod arrays to electrolyte and the association with photocatalysis. <i>Applied Surface Science</i> , 2019 , 464, 367-375	6.7	33
332	Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators. <i>Journal of Colloid and Interface Science</i> , 2019 , 534, 509-517	9.3	33
331	Novel photoactivation and solar-light-driven thermocatalysis on MnO2 nanosheets lead to highly efficient catalytic abatement of ethyl acetate without acetaldehyde as unfavorable by-product. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 14195-14206	13	33
330	Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2. <i>Applied Surface Science</i> , 2017 , 410, 363-372	6.7	32
329	Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell. <i>Journal of Alloys and Compounds</i> , 2015 , 642, 104-110	5.7	32
328	Crystal structural, optical properties and mott-schottky plots of p-type Ca doped CuFeO 2 nanoplates. <i>Materials Research Bulletin</i> , 2016 , 83, 141-147	5.1	32
327	Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. <i>Science Bulletin</i> , 2020 , 65, 45-54	10.6	32
326	P-type transparent conducting SnO2:Zn film derived from thermal diffusion of Zn/SnO2/Zn multilayer thin films. <i>Surface and Coatings Technology</i> , 2012 , 206, 4356-4361	4.4	31
325	Polymeric adsorption of methylene blue in TiO2 colloids-highly sensitive thermochromism and selective photocatalysis. <i>Chemistry - A European Journal</i> , 2012 , 18, 12705-11	4.8	31
324	Use of delafossite oxides CuCr1-xGaxO2 nanocrystals in p-type dye-sensitized solar cell. <i>Journal of Alloys and Compounds</i> , 2016 , 662, 374-380	5.7	30
323	Growth and optical properties of cerium dioxide nanocrystallites prepared by coprecipitation routes. <i>Ceramics International</i> , 2014 , 40, 4055-4064	5.1	30

322	Second-harmonic generation in IR-transparent beta-GeS2 crystallized glasses. <i>Optics Letters</i> , 2009 , 34, 437-9	3	30
321	Crystallization Kinetics of Superionic Conductive Al(B, La)- Incorporated LiTi2(PO4)3 Glass-Ceramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 801-805	3.8	29
320	Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide. <i>International Journal of Applied Glass Science</i> , 2015 , 6, 339-344	1.8	29
319	Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO. <i>Chemical Engineering Journal</i> , 2012 , 213, 218-224	14.7	29
318	Preparation and characterization of copper indium disulfide films by facile chemical method. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2007 , 139, 88-94	3.1	29
317	The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of FM-codoped and SM-codoped titania. <i>Journal of Molecular Catalysis A</i> , 2008 , 285, 142-149		29
316	Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming CdZnSe Shell. <i>Scientific Reports</i> , 2017 , 7, 42359	4.9	28
315	Constructing non-fluorinated porous superhydrophobic SiO2-based films with robust mechanical properties. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 551, 65-73	5.1	28
314	Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2007 , 67, 1351-6	4.4	28
313	Tungsten doped M-phase VO2 mesoporous nanocrystals with enhanced comprehensive thermochromic properties for smart windows. <i>Ceramics International</i> , 2019 , 45, 4342-4350	5.1	28
312	Er3+ Ions-Doped Germano-Gallate Oxyfluoride Glass-Ceramics Containing BaF2 Nanocrystals. Journal of the American Ceramic Society, 2015 , 98, 2117-2121	3.8	27
311	Second-order optical nonlinearity and ionic conductivity of nanocrystalline GeS2-Ga2S3-Lil glass-ceramics with improved thermo-mechanical properties. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 3780-7	3.6	27
310	Annealing effects on the structure and optical properties of GeSe2 and GeSe4 films prepared by PLD. <i>Journal of Alloys and Compounds</i> , 2009 , 484, 645-648	5.7	27
309	The synthesis and kinetic growth of anisotropic silver particles loaded on TiO2 surface by photoelectrochemical reduction method. <i>Applied Surface Science</i> , 2008 , 254, 1705-1709	6.7	27
308	Permanent second-harmonic generation in AgGaGeS4 bulk-crystallized chalcogenide glasses. <i>Chemical Physics Letters</i> , 2008 , 460, 125-128	2.5	27
307	A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 183-188	6.8	27
306	Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. <i>New Journal of Chemistry</i> , 2016 , 40, 6498-6504	3.6	26
305	Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. <i>Chemical Engineering Journal</i> , 2016 , 284, 1156-1164	14.7	26

304	Mg-doped OMS-2 nanorods: a highly efficient catalyst for purification of volatile organic compounds with full solar spectrum irradiation. <i>Environmental Science: Nano</i> , 2017 , 4, 1798-1807	7.1	26	
303	One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence. <i>CrystEngComm</i> , 2017 , 19, 7041-7049	3.3	26	
302	Shape-controlled synthesis for silver: Triangular/hexagonal nanoplates, chain-like nanoplate assemblies, and nanobelts. <i>Journal of Materials Research</i> , 2009 , 24, 2200-2209	2.5	26	
301	Synthesis, Characterization, and Photocatalysis of Fe-Doped: A Combined Experimental and Theoretical Study. <i>International Journal of Photoenergy</i> , 2012 , 2012, 1-10	2.1	26	
300	Defect configurations in GeB chalcogenide glasses studied by Raman scattering and positron annihilation technique. <i>Journal of Non-Crystalline Solids</i> , 2009 , 355, 438-440	3.9	26	
299	Electrodeposited and selenized CIGS thin films for solar cells. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1447-1450	3.9	26	
298	Electrical conductivity of ZrF4?AlF3?BaF2?Alkali Fluoride glasses. <i>Journal of Non-Crystalline Solids</i> , 1988 , 99, 45-58	3.9	26	
297	Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom. <i>Journal of Energy Chemistry</i> , 2021 , 58, 577-585	12	26	
296	Poly(methyl methacrylate) (PMMA) doped with DCJTB for luminescent solar concentrator applications. <i>Solar Energy</i> , 2015 , 115, 569-576	6.8	25	
295	Hierarchical ZnO hollow microspheres with exposed (001) facets as promising catalysts for the thermal decomposition of ammonium perchlorate. <i>CrystEngComm</i> , 2015 , 17, 8689-8696	3.3	25	
294	VO2/AZO double-layer films with thermochromism and low-emissivity for smart window applications. <i>Journal of Non-Crystalline Solids</i> , 2014 , 383, 121-125	3.9	25	
293	Size-controlled oriented crystallization in SiO_2-based glasses by femtosecond laser irradiation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 376	1.7	25	
292	Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2552-2556	3.9	25	
291	Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 3576-3582	3.3	25	
29 0	Structural investigations of GeS2ta2S3tdS chalcogenide glasses using Raman spectroscopy. <i>Solid State Communications</i> , 2004 , 130, 459-464	1.6	25	
289	Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2002 , 24, 229-240	2.3	25	
288	Large Stokes-shift AIE fluorescent materials for high-performance luminescent solar concentrators. <i>Organic Electronics</i> , 2019 , 73, 226-230	3.5	24	
287	Isothermal crystallization kinetics and effect of crystallinity on the optical properties of nanosized CeO2 powder. <i>Ceramics International</i> , 2014 , 40, 6663-6671	5.1	24	

286	Investigation of electron behavior in Nano-TiO2 photocatalysis by using in situ open-circuit voltage and photoconductivity measurements. <i>Chemistry - A European Journal</i> , 2013 , 19, 10751-9	. .8	24
285	Fabrication and ionic conductivity of amorphous LiAlITiPO thin film. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 3267-3271	3.9	24
284	The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB. Materials Characterization, 2008, 59, 380-384	3.9	24
283	Structure and properties of GeS2Ca2S3CdI2 chalcohalide glasses. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2007 , 138, 235-240	3.1	24
282	Origin of the frequency shift of Raman scattering in chalcogenide glasses. <i>Journal of Non-Crystalline Solids</i> , 2014 , 391, 117-119	3.9	23
281	Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. <i>Optical Materials Express</i> , 2017 , 7, 2194	2.6	23
280	Construction of hierarchical titanium dioxide nanomaterials by tuning the structure of polyvinylpyrrolidonelitanium butoxide complexes from 2- to 3-dimensional. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4993	13	23
279	Formation and properties of chalcogenide glasses in the GeS2Ca2S3CdS system. <i>Materials Chemistry and Physics</i> , 2004 , 83, 284-288	ļ.4	23
278	Formation of NiCo Alloy Nanoparticles on Co Doped Al2O3 Leads to High Fuel Production Rate, Large Light-to-Fuel Efficiency, and Excellent Durability for Photothermocatalytic CO2 Reduction. Advanced Energy Materials, 2020, 10, 2002602	21.8	23
277	Polyvinylpyrrolidone-Assisted Hydrothermal Synthesis of CuCoO2 Nanoplates with Enhanced Oxygen Evolution Reaction Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1493-1501 ⁸	3.3	23
276	Efficient UV-vis-IR light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation. <i>Environmental Science: Nano</i> , 2017 , 4, 373-384	7.1	22
275	Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses. Journal of Nanoparticle Research, 2011 , 13, 3693-3697	2.3	22
274	Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF). <i>Applied Surface Science</i> , 2009 , 255, 7361-6	7 3 68	22
273	Thermal and optical properties of GeS2-based chalcogenide glasses. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 110, 38-41	3.1	22
272	Role of Sodium Ion on TiO2 Photocatalyst: Influencing Crystallographic Properties or Serving as the Recombination Center of Charge Carriers?. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 10390-10399	3.8	22
271	Surface oxygen vacancies promoted photodegradation of benzene on TiO2 film. <i>Applied Surface Science</i> , 2020 , 511, 145597	б.7	21
270	Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au ions. <i>Nanoscale</i> , 2018 , 10, 2781-2789	7.7	21
269	Electrochromic properties of Al doped B-subsituted NiO films prepared by solgel. <i>Progress in Organic Coatings</i> , 2009 , 64, 300-303	. .8	21

(2017-2008)

268	Preparation and properties of chalcogenide glasses in the GeS2Bb2S3IddS system. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1159-1163	3.9	21
267	Zeolitic-imidazolate-framework (ZIF-8)/PEDOT:PSS composite counter electrode for low cost and efficient dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2018 , 42, 17303-17310	3.6	21
266	Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity. <i>Applied Surface Science</i> , 2015 , 347, 747-754	6.7	20
265	Effect of annealing temperature on the crystalline structure, growth behaviour and properties of SnO2:Sb thin films prepared by radio frequency (RF)-magnetron sputtering. <i>Journal of Alloys and Compounds</i> , 2016 , 663, 371-378	5.7	20
264	Oleic acid assisted formation mechanism of CuInS2 nanocrystals with tunable structures. <i>RSC Advances</i> , 2014 , 4, 36875-36881	3.7	20
263	Enhanced Up-Conversion Luminescence in Er3+-Doped 25GeS2B5Ga2S3B40CsCl Chalcogenide GlassDeramics. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 816-819	3.8	20
262	Formation and properties of the GeS2Ih2S3ICl new chalcohalide glassy system. <i>Materials Letters</i> , 2006 , 60, 741-745	3.3	20
261	Mixed alkali effect in elastic properties of glasses in the ZrF4-BaF2- AlF3-RF system (RF = LiF-NaF, NaF-KF). <i>Journal of Materials Science</i> , 1987 , 22, 4103-4107	4.3	20
260	Crystallization properties of magnesium aluminosilicate glass-ceramics with and without rare-earth oxides. <i>Journal of Non-Crystalline Solids</i> , 2015 , 419, 1-5	3.9	19
259	Thermal Insulation Monolith of Aluminum Tobermorite Nanosheets Prepared from Fly Ash. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2866-2873	8.3	19
258	The formation of CuO/OMS-2 nanocomposite leads to a significant improvement in catalytic performance for NO reduction by CO. <i>Applied Catalysis A: General</i> , 2017 , 530, 1-11	5.1	19
257	Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2🛭4Ga2S3🗓0KBr chalcohalide glasses. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 2320-2323	3.9	19
256	Third- and second-order optical nonlinearity of GellaBBb12 chalcohalide glasses. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 240-248	3.3	19
255	Optical second-order nonlinearity of the infrared transmitting 82GeS2¶8CdGa2S4 nanocrystallized chalcogenide glass. <i>Applied Physics Letters</i> , 2007 , 91, 011904	3.4	19
254	Numerical study of gasBolid flow in a precalciner using kinetic theory of granular flow. <i>Chemical Engineering Journal</i> , 2004 , 102, 151-160	14.7	19
253	Novel photoactivation promotes catalytic abatement of CO on CuO mesoporous nanosheets with full solar spectrum illumination. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 314-323	21.8	19
252	Enhance photovoltaic performance of tris(2,2?-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO 2 surface with metal-organic frameworks. <i>Solar Energy</i> , 2017 , 147, 126-132	6.8	18
251	The role of electron interfacial transfer in mesoporous nano-TiO photocatalysis: a combined study of in situ photoconductivity and numerical kinetic simulation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8866-8873	3.6	18

250	Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. <i>Applied Surface Science</i> , 2019 , 490, 283-292	6.7	18
249	A facile hydrothermal route to synthesize delafossite CuMnO2 nanocrystals. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 10159-10163	2.1	18
248	Optical non-linearity in nano- and micro-crystallized glasses. <i>Journal of Non-Crystalline Solids</i> , 2013 , 377, 146-150	3.9	18
247	Studies on a possible growth mechanism of silver nanoparticles loaded on TiO2 thin films by photoinduced deposition method. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1267-1271	3.9	18
246	Structural design of carbon dots/porous materials composites and their applications. <i>Chemical Engineering Journal</i> , 2021 , 421, 127743	14.7	18
245	Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiOlassemblies using a continuous random walk simulation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22343-51	3.6	17
244	Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property. <i>Journal of Materials Research</i> , 2011 , 26, 2691-2700	2.5	17
243	Facile fabrication of SiO2/Al2O3 composite microspheres with a simple electrostatic attraction strategy. <i>Materials Research Bulletin</i> , 2008 , 43, 714-722	5.1	17
242	Preparation, characterization, and growth mechanism of a novel aligned nanosquare anatase in large quantities in the presence of TMAOH. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 171-7	9.3	17
241	Femtosecond third-order optical nonlinearity of the GeS2La2S3LdI2 new chalcohalide glasses. <i>Solid State Communications</i> , 2006 , 138, 485-488	1.6	17
240	A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7202-7212	13	17
239	High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. <i>Applied Surface Science</i> , 2019 , 465, 192-200	6.7	17
238	Understanding of metal-insulator transition in VO based on experimental and theoretical investigations of magnetic features. <i>Scientific Reports</i> , 2018 , 8, 17093	4.9	17
237	Yolk-shell m-SiO2@ Nitrogen doped carbon derived zeolitic imidazolate framework high efficient counter electrode for dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2018 , 292, 276-284	6.7	17
236	Optical properties and formation mechanism of M1-phase VO2 thin films annealed in a closed NH3 atmosphere. <i>Journal of Alloys and Compounds</i> , 2017 , 706, 289-296	5.7	16
235	Trivalent ion mediated abnormal growth of all-inorganic perovskite nanocrystals and their divergent emission properties. <i>Nanoscale</i> , 2019 , 11, 7903-7912	7.7	16
234	In Situ Photoconductivity Kinetic Study of Nano-TiO2 during the Photocatalytic Oxidation of Formic Acid: Effects of New Recombination and Current Doubling. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 21711-21722	3.8	16
233	Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. <i>New Journal of Chemistry</i> , 2018 , 42, 11715-11723	3.6	16

232	Crystallite growth kinetics of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process. <i>Journal of Alloys and Compounds</i> , 2014 , 588, 428-439	5.7	16	
231	Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals. <i>Journal of Non-Crystalline Solids</i> , 2013 , 365, 1-5	3.9	16	
230	Enhanced photocatalytic activity of mesoporous S-N-codoped TiO2loaded with Ag nanoparticles. <i>Semiconductor Science and Technology</i> , 2011 , 26, 085037	1.8	16	
229	Non-linear optical properties of chalcogenide and chalcohalide glasses. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2375-2377	3.9	16	
228	Glass formation in Sb2Se3?MXn (metal halides). <i>Journal of Non-Crystalline Solids</i> , 1994 , 167, 70-73	3.9	16	
227	Si3N4/MoS2-PEDOT: PSS composite counter electrode for bifacial dye-sensitized solar cells. <i>Solar Energy</i> , 2018 , 173, 1135-1143	6.8	16	
226	Intense ~1.2IIIn emission from Ho3+/Y3+ ions co-doped oxyfluoride glass-ceramics containing BaF2 nanocrystals. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 392-398	5.7	15	
225	A novel nanocomposite of mesoporous silica supported Ni nanocrystals modified by ceria clusters with extremely high light-to-fuel efficiency for UV-vis-IR light-driven CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4881-4892	13	15	
224	Facile synthesis of VO2 (D) and its transformation to VO2(M) with enhanced thermochromic properties for smart windows. <i>Ceramics International</i> , 2020 , 46, 14739-14746	5.1	15	
223	Effects of Y 3+ /Er 3+ ratio on the 2.7 th emission of Er 3+ ions in oxyfluoride glass-ceramics. <i>Optical Materials</i> , 2016 , 54, 89-93	3.3	15	
222	A visible-light-active Au-Cu(I)@Na2Ti6O13 nanostructured hybrid pasmonic photocatalytic membrane for acetaldehyde elimination. <i>Chinese Journal of Catalysis</i> , 2017 , 38, 2048-2055	11.3	15	
221	Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. <i>Progress in Organic Coatings</i> , 2009 , 64, 120-	123	15	
220	The study of photocatalysis under ultraviolet+visible two-beam light irradiation using undoped nano-titanium dioxide. <i>Materials Chemistry and Physics</i> , 2008 , 112, 35-40	4.4	15	
219	Structure dependence of ultrafast third-order optical nonlinearity for GeS2Ih2S3IIsI chalcohalide glasses. <i>Solid State Communications</i> , 2007 , 142, 453-456	1.6	15	
218	Mechanism of electron beam poled SHG in 0.95GeS2ID.05In2S3 chalcogenide glasses. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 158-161	3.9	15	
217	Crystal growth and optical properties of CdS-doped lead silicate glass. <i>Materials Characterization</i> , 2007 , 58, 96-100	3.9	15	
216	Synthesis and characterization of silver nanowires with zigzag morphology in N,N-dimethylformamide. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 2262-2267	3.3	15	
215	Facile preparation, characterization and optical properties of rectangular PbCrO4 single-crystal nanorods. <i>Journal of Alloys and Compounds</i> , 2007 , 431, L4-L7	5.7	15	

214	Co-electrodeposition and Characterization of Cu (In, Ga)Se2 thin films. <i>Journal of Materials Science</i> , 2006 , 41, 1875-1878	4.3	15
213	Preparation and characterization of highly photoactive nanocrystalline TiO2 powders by solvent evaporation-induced crystallization method. <i>Science in China Series B: Chemistry</i> , 2003 , 46, 549		15
212	Revealing the Effects of Defects on Ultrafast Carrier Dynamics of CsPbI3 Nanocrystals in Glass. Journal of Physical Chemistry C, 2019 , 123, 15851-15858	3.8	14
211	Fabrication and band engineering of Cu-doped CdSe0.6Te0.4-alloyed quantum dots for solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 161-170	6.4	14
210	Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur. <i>Journal of Non-Crystalline Solids</i> , 2014 , 391, 39-42	3.9	14
209	Infrared emission from Er3+/Y3+ co-doped oxyfluoride glass-ceramics. <i>Journal of Non-Crystalline Solids</i> , 2014 , 404, 37-42	3.9	14
208	Characterization of Cu2ZnSnS4 Thin Films Prepared by Solution-based Deposition Techniques. <i>Physics Procedia</i> , 2013 , 48, 228-234		14
207	Compositional dependences on the mechanism of upconversion in Nd3+/Tm3+ co-doped chalcohalide glasses. <i>Journal of Non-Crystalline Solids</i> , 2011 , 357, 2421-2423	3.9	14
206	Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 555-562	2.3	14
205	Preparation and characterization of transparent conductive zinc doped tin oxide thin films prepared by radio-frequency magnetron sputtering. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2011 , 26, 388-392	1	14
204	Synthesis and properties of GeS2 G a2S3 P bI2 chalcohalide glasses. <i>Materials Research Bulletin</i> , 2007 , 42, 1111-1118	5.1	14
203	A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 10887-95	3.6	14
202	Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties. <i>Journal of Colloid and Interface Science</i> , 2019 , 534, 389-398	9.3	14
201	Formation of CdS/Cd1\(\mathbb{Z}\)rxS sandwich-structured quantum dots with high quantum efficiency in silicate glasses. <i>Journal of Luminescence</i> , 2017 , 186, 30-33	3.8	13
200	Preparation and optical polarization of Ag/epoxy composite films with aligned Ag nanowires. <i>Journal of Alloys and Compounds</i> , 2014 , 592, 57-62	5.7	13
199	Direct experimental evidence for SbZnIVZn complex as the important defect in the Sb-doped ZnO nanocrystals. <i>Materials Letters</i> , 2014 , 116, 363-366	3.3	13
198	Transparent and high infrared reflection film having sandwich structure of SiO2/Al:ZnO/SiO2. <i>Progress in Organic Coatings</i> , 2009 , 64, 317-321	4.8	13
197	Thermal-induced gradually changes in the optical properties of amorphous GeSe2 film prepared by PLD. <i>Physica B: Condensed Matter</i> , 2009 , 404, 3397-3400	2.8	13

(2018-2007)

19	Study of thermal and optical properties of GeS2©a2S3Ag2S chalcogenide glasses. <i>Materials Research Bulletin</i> , 2007 , 42, 1804-1810	5.1	13	
19	An approach to predict the solid film thickness possibly yielded from an alumina sol-gel liquid film. Surface and Coatings Technology, 2006 , 201, 2655-2661	4.4	13	
19.	A new method of fabricating internally solgel coated capillary tubes. <i>Surface and Coatings Technology</i> , 2003 , 162, 228-233	4.4	13	
19	Femtosecond optical Kerr effect study of Ge10As40S30Se20 film. <i>Solid State Communications</i> , 2005 , 134, 513-517	1.6	13	
19	Air superhydrophilic-superoleophobic SiO-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability. <i>Journal of Colloid and Interface Science</i> , 2021 , 600, 118-12	16 ^{9.3}	13	
19	Phase formation of zinc titanate precursor prepared by a hydrothermal route at pH 5. <i>Ceramics</i> International, 2014 , 40, 7407-7415	5.1	12	
19	Effects of addition of tungsten chloride on optical properties of VO2-based thermochromic films prepared by solgel method. <i>Journal of Non-Crystalline Solids</i> , 2014 , 383, 116-120	3.9	12	
18	Effects of YF3 doping on the optical properties of Er3+ ions in oxyfluoride glassBeramics. <i>Journal of Luminescence</i> , 2014 , 153, 252-258	3.8	12	
18	Structure and Vibrational Modes of As-S-Se Glasses: Raman Scattering and Ab Initio Calculations. <i>Physics Procedia</i> , 2013 , 48, 59-64		12	
18	CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2013 , 28, 17-21	1	12	
18	Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2009 , 24, 258-263	1	12	
18	Microstructure and thermal properties of the GeS2Ih2S3IIsI glassy system. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1298-1302	3.9	12	
18.	Elimination of a zero-growth in thickness of Al2O3 protective film deposited by cycles of dip-coating method. <i>Journal of Sol-Gel Science and Technology</i> , 2007 , 42, 151-156	2.3	12	
18	The influence of O2 partial pressure on the structure and surface wettability of C-modified TiO2 films prepared by magnetron co-sputtering. <i>Chemical Physics Letters</i> , 2008 , 457, 148-153	2.5	12	
18.	Microstructural characterization and optical polarization of glass with needle-like microflano silver oriented arrangement. <i>Optics Communications</i> , 2008 , 281, 5041-5044	2	12	
18:	Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering. <i>Spectrochimica</i> Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006 , 64, 1039-45	4.4	12	
18	Room temperature synthesis of aqueous soluble covellite CuS nanocrystals with high photothermal conversion. <i>CrystEngComm</i> , 2018 , 20, 4283-4290	3.3	12	
17	Alignment of Ag nanowires on glass sheet by dip-coating technique. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 607-612	5.7	11	

178	A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31914-31923	3.6	11
177	Thermochromic performances of tungsten-doping porous VO2 thin films. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 78, 582-588	2.3	11
176	Utilizing Sn Precursor To Promote the Nucleation of PbSe Quantum Dots with in Situ Halide Passivation. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5626-5632	3.8	11
175	New chalcohalide glasses from the GeS2Ih2S3IIsCl system. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1303-1307	3.9	11
174	Second harmonic generation in transparent microcrystalline <code>EcdGa2S4-containing</code> chalcogenide glass ceramics. <i>Optics Communications</i> , 2007 , 274, 466-470	2	11
173	Formation, thermal, optical and physical properties of GeS2La2S3LgCl novel chalcohalide glasses. <i>Journal of Materials Science</i> , 2007 , 42, 9632-9637	4.3	11
172	Second-harmonic generation in the thermal/electrical poling (100🛭)GeS2[k(0.5Ga2S3[D.5CdS) chalcogenide glasses. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 97-100	3.9	11
171	Effects of PSMA and experimental conditions on the morphologies of BaCO3 whiskers. <i>Rare Metals</i> , 2006 , 25, 382-388	5.5	11
170	A simple route to the water-repellent surface based on chemical N modified TiD structure films. <i>Surface and Coatings Technology</i> , 2006 , 201, 3606-3610	4.4	11
169	Study of the synthesis of SiO2IIiO2IGeO2 gel glass for hollow waveguide application in CO2 laser delivery. <i>Journal of Materials Chemistry</i> , 2003 , 13, 3066-3071		11
168	Effect of surface microstructure on the super-hydrophilic property of the sol-gel derived porous TiO2 thin films. <i>Journal of Materials Science Letters</i> , 2001 , 20, 671-673		11
167	Porous rGO/ZnSe/CoSe2 dispersed in PEDOT:PSS as an efficient counter electrode for dye-sensitized solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2702-2714	7.8	11
166	Tin-assisted growth of all-inorganic perovskite nanoplatelets with controllable morphologies and complementary emissions. <i>CrystEngComm</i> , 2019 , 21, 2388-2397	3.3	10
165	Facile synthesis of CuS/MXene nanocomposites for efficient photocatalytic hydrogen generation. CrystEngComm, 2020 , 22, 2060-2066	3.3	10
164	UV-vis-IR irradiation driven CO2 reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al2O3 nanosheets. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19800-19810	13	10
163	TiO2/WO3 Layered Film with Dual-Function of Anti-UV Light and High Photoelectrocatalytic Activity: Facile Preparation and Characterization. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 334	6 ² 3351	1 10
162	Thermal behavior and lithium ion conductivity of L2O-Al2O3-TiO2-SiO2-P2O5 glass-ceramics. Journal Wuhan University of Technology, Materials Science Edition, 2012 , 27, 67-72	1	10
161	The surface change of TiO2 film induced by UV illumination and the effects on UVII is transmission spectra. <i>Applied Surface Science</i> , 2008 , 255, 2752-2758	6.7	10

(2019-2006)

160	The Synthesis of Stable, High Solid Content Alumina Sol. <i>Journal of Sol-Gel Science and Technology</i> , 2006 , 38, 19-23	2.3	10
159	Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. <i>Nanoscale</i> , 2021 , 13, 9561-9569	7.7	10
158	Inter-diffusion of Cu2+ ions into CuS nanocrystals confines the microwave absorption properties. <i>CrystEngComm</i> , 2018 , 20, 6565-6572	3.3	10
157	Unusual magnetic transition near metal-insulator transition and paramagnetic anomaly in VO2. <i>Applied Physics Letters</i> , 2017 , 110, 172404	3.4	9
156	Hexamethyldisilazane-triggered room temperature synthesis of hydrophobic perovskite nanocrystals with enhanced stability for light-emitting diodes. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 101-110	9.3	9
155	Effect of the interface on UVIIIsIR photodetection performance of PbS/ZnO nanocomposite photocatalysts. <i>Applied Surface Science</i> , 2015 , 358, 498-505	6.7	9
154	The properties of PMMA/DCJTB thin-film luminescent solar concentrator with various thicknesses. <i>Solar Energy</i> , 2015 , 120, 419-427	6.8	9
153	A facile one-step annealing route to prepare thermochromic W doped VO2(M) particles for smart windows. <i>Ceramics International</i> , 2020 , 46, 18274-18280	5.1	9
152	Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses. <i>Optics Express</i> , 2017 , 25, 6874-6882	3.3	9
151	Direct observation of Nd 3+ and Tm 3+ ion distributions in oxy-fluoride glass ceramics containing PbF 2 nanocrystals. <i>Materials Characterization</i> , 2014 , 98, 228-232	3.9	9
150	Ultrafast non-resonant third-order optical nonlinearity of IdS chalcogenide glass. <i>Solid State Communications</i> , 2010 , 150, 875-878	1.6	9
149	Electrochemical detection of catechol at integrated carbon nanotubes electrodes. <i>Diamond and Related Materials</i> , 2007 , 16, 248-252	3.5	9
148	Second-order optical nonlinearity in Sb2S3 microcrystal doped glasses by electron beam irradiation. <i>Optics Communications</i> , 2007 , 274, 456-460	2	9
147	SbS3 enhanced ultrafast third-order optical nonlinearities of GeB chalcogenide glasses at 820nm. <i>Optical Materials</i> , 2008 , 31, 193-195	3.3	9
146	Heavy halide glasses based on lead bromide and lead iodide. <i>Journal of Non-Crystalline Solids</i> , 1992 , 140, 225-228	3.9	9
145	Properties of mixed alkali fluoride glasses in the ZrF4?PbF2?AlF3?RF (R = Li, Na, K) system. <i>Journal of Non-Crystalline Solids</i> , 1988 , 103, 93-100	3.9	9
144	Understanding the atomic and electronic structures origin of defect luminescence of CdSe quantum dots in glass matrix. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 5375-5385	3.8	9
143	ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 1976-1987	5.8	9

142	Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues. <i>Journal of the American Ceramic Society</i> , 2019 , 102, 4602-4611	3.8	9
141	VO2-ZnO composite films with enhanced thermochromic properties for smart windows. <i>Ceramics International</i> , 2020 , 46, 2758-2763	5.1	9
140	Structural and spectroscopic properties of Yb3+-doped zinc aluminate nanocrystals in silicate glass-ceramics. <i>Journal of Non-Crystalline Solids</i> , 2017 , 457, 93-96	3.9	8
139	Correlation of electron transport and photocatalysis of nanocrystalline clusters studied by Monte-Carlo continuity random walking. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5265-73	3.6	8
138	Fabrication and cavity-size-dependent photocatalytic property of TiO2 hollow nanoparticles with tunable cavity size. <i>Materials Research Bulletin</i> , 2020 , 126, 110744	5.1	8
137	Surface, conformational and catalytic activity approach of £hymotrypsin and trypsin in micellar media. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 470, 188-193	5.1	8
136	Synthesis and second-order optical nonlinearity of DAMS/Mn2P2S6 intercalated materials by ion exchange method. <i>Chemical Physics Letters</i> , 2009 , 477, 388-391	2.5	8
135	The influence of annealing on electrochromic properties of AlBNiO thin films prepared by solgel. <i>Journal of Sol-Gel Science and Technology</i> , 2010 , 54, 43-48	2.3	8
134	Structural dependence of ultrafast third-order optical nonlinearity of Gellalage chalcogenide glasses. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 440-444	3.9	8
133	Second-order nonlinear optical properties of Ge-Ga-Ag-S glass irradiated by electron beam. <i>Transactions of Nonferrous Metals Society of China</i> , 2006 , 16, s170-s173	3.3	8
132	Marvelous prolongation of lifetime of alumina sol from aluminum sec-butoxide with the presence of ethylacetoacetate in aqueous medium. <i>Materials Letters</i> , 2005 , 59, 3742-3745	3.3	8
131	Efficient UV-vis-IR photothermocatalytic selective ethanol oxidation on MnOx/TiO2 nanocomposites significantly enhanced by a novel photoactivation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1254-1264	13	8
130	Ab Initio Molecular Dynamics of CdSe Quantum-Dot-Doped Glasses. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3905-3912	16.4	8
129	New Insight into the Role of Electron Transfer to O2 in Photocatalytic Oxidations of Acetone over TiO2 and the Effect of Au Cocatalyst. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 30958-30971	3.8	8
128	Heat-up and gram-scale synthesis of Cu-poor CZTS nanocrystals with controllable compositions and shapes. <i>CrystEngComm</i> , 2017 , 19, 2013-2020	3.3	7
127	Enhanced 1.47th emission from Tm3+ ions in rare-earth co-doped oxyfluoride glass-ceramics. Journal of Non-Crystalline Solids, 2015 , 416, 31-35	3.9	7
126	Aspect ratio control of Au nanorods via covariation of the total amount of HAuCl4 and ascorbic acid. <i>Journal of Alloys and Compounds</i> , 2015 , 637, 36-43	5.7	7
125	Surfactant-Modified Hydrothermal Synthesis of Ca-Doped CuCoO Nanosheets with Abundant Active Sites for Enhanced Electrocatalytic Oxygen Evolution. <i>Inorganic Chemistry</i> , 2020 , 59, 9889-9899	5.1	7

(2007-2020)

124	Hydrothermal synthesis of delafossite CuScO hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. <i>Dalton Transactions</i> , 2020 , 49, 3519-3524	4.3	7	
123	Formation of CeMnxOy/OMS-2 nanocomposite significantly enhances UVIIis-infrared light-driven catalytic activity. <i>Catalysis Today</i> , 2019 , 326, 46-53	5.3	7	
122	Thermal behavior and crystallization kinetics of cerium dioxide precursor powders. <i>Ceramics International</i> , 2014 , 40, 13953-13959	5.1	7	
121	Dual-band photoluminescence of lead selenide quantum dots doped oxyfluoride glass-ceramics containing BaF2 nanocrystals. <i>Journal of Non-Crystalline Solids</i> , 2014 , 385, 136-141	3.9	7	
120	Three naphthoate-based cadmium(II) complexes with discrete binuclear, cyclic tetranuclear, and polymeric double-chain motifs. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2015 , 41, 16-24	1.6	7	
119	Large second-order nonlinearity in thermally poled GeBbtdB chalcogenide glass. <i>Optical Materials</i> , 2009 , 31, 865-869	3.3	7	
118	Ultrafast third-order optical non-linearity of 0.56GeS2\(\tilde{D}\).24Ga2S3\(\tilde{D}\).2KX(X=Cl, Br, I) chalcohalide glasses by femtosecond Optical Kerr Effect. <i>Optical Materials</i> , 2009 , 32, 26-29	3.3	7	
117	Second harmonic generation in surface crystallized 30GeS2B5Ga2S3B5AgCl chalcohalide glasses. <i>Optical Materials</i> , 2009 , 31, 1434-1438	3.3	7	
116	Optical properties of pulsed laser deposited amorphous (GeSe2)100\(\mathbb{B}\) i x films. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 99, 889-894	2.6	7	
115	Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses. <i>Journal of Materials Science</i> , 2007 , 42, 6549-6554	4.3	7	
114	CsPbBr3@SiO2 CoreBhell Nanoparticle Films for Superhydrophobic Coatings. <i>ACS Applied Nano Materials</i> , 2021 , 4, 6306-6315	5.6	7	
113	Influence of Amine-Based Cationic Gemini Surfactants on Catalytic Activity of Echymotrypsin. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 779-784	1.4	7	
112	Structure and optical properties of ZnO/Zn2SiO4 composite thin films containing Eu3+ ions. <i>Thin Solid Films</i> , 2018 , 668, 1-8	2.2	7	
111	Base-catalyzed synthesis of superhydrophobic and antireflective films for enhanced photoelectronic applications. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 3958-3966	5.5	6	
110	White upconversion luminescence generation from Ho3+ singly doped chalcohalide glasses. <i>Materials Research Bulletin</i> , 2014 , 55, 102-105	5.1	6	
109	Crystallite growth and optical properties of cadmium oxide thin films annealed at various temperatures for various durations. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 80, 842	-8 ⁵ 3	6	
108	Preparation of the monolith of hierarchical macro-/mesoporous calcium silicate ultrathin nanosheets with low thermal conductivity by means of ambient-pressure drying. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1394-401	4.5	6	
107	Second-order non-linear optical studies on CdS microcrystallite-doped alkali borosilicate glasses. Journal of Physics and Chemistry of Solids, 2007, 68, 963-967	3.9	6	

106	Preparation and second harmonic generation of nanosized Sb2S3 doped silica glasses by the sol-gel process. <i>Journal of Sol-Gel Science and Technology</i> , 2007 , 41, 169-174	2.3	6
105	Femtosecond optical Kerr effect study of amorphous chalcogenide films. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 2351-2354	3.9	6
104	Ultrafast nonresonant third-order optical nonlinearity of the 0.64GeS2 0 .16Ga2S3 0 .2CsCl chalcohalide glass. <i>Journal of Materials Science</i> , 2006 , 41, 6481-6484	4.3	6
103	Highly efficient tandem luminescent solar concentrators based on eco-friendly copper iodide based hybrid nanoparticles and carbon dots. <i>Energy and Environmental Science</i> ,	35.4	6
102	MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. <i>Solar Energy</i> , 2021 , 218, 117-128	6.8	6
101	Facile Preparation of Zn2V2O7№O2 Composite Films with Enhanced Thermochromic Properties for Smart Windows. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 2224-2232	4	6
100	Optical properties and microstructure of Au nanorods via seed solution amount variation synthesized by seed-mediated growth method. <i>Journal of Alloys and Compounds</i> , 2015 , 649, 617-624	5.7	5
99	Ab initio molecular dynamics study on thermal expansion of solid-solution compounds in MAX phase. <i>Computational Materials Science</i> , 2015 , 103, 200-203	3.2	5
98	Comparative Study of Optical Properties of Polarizing Oxide Glasses with Silver Nanorods and Chalcogenide Glasses with Copper Nanoparticles. <i>Physics Procedia</i> , 2013 , 48, 191-195		5
97	Study on the Reaction Mechanism of Potassium Titanate Fibers. <i>Integrated Ferroelectrics</i> , 2014 , 153, 15	56 ⊴18 3	5
96	The generation and stability of second-harmonic in electron-beam irradiated GeS2Ih2S3IIdS chalcogenide glasses. <i>Solid State Communications</i> , 2009 , 149, 266-268	1.6	5
95	Second-order non-linear optical studies on CdS microcrystallite doped lead silicate glasses. <i>Materials Letters</i> , 2007 , 61, 1031-1033	3.3	5
94	Preparation and characterization of CeO2-TiO2/SnO2:Sb films deposited on glass substrates by R.F. sputtering. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2008 , 23, 443-447	1	5
93	Non-resonant third-order non-linear optical properties of amorphous GeSe2 film. <i>Journal of Non-Crystalline Solids</i> , 2005 , 351, 3147-3151	3.9	5
92	Enhancing photocatalytic activity of the sol-gel derived TiO2 thin films by nitric acid treatment. Journal of Materials Science Letters, 2003 , 22, 967-970		5
91	Properties of glasses in the ZrF4-AlF3-BaF2-RF (R = Li, Na or K) system. <i>Journal of Materials Science</i> , 1988 , 23, 3455-3458	4.3	5
90	UVIVisInfrared Light-Driven Photothermocatalytic Synergetic Effect Leading to Efficient Benzene Abatement by Pt Supported on Anatase TiO2 with {001} Facets. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7920-7930	6.1	5
89	Unraveling the electronic structure, mechanical, and dielectric properties of ZnPurBr-MOF: Ab initio calculations. <i>APL Materials</i> , 2020 , 8, 111101	5.7	5

(2008-2021)

88	Metal Chalcogenides (M \times E y ; E = S, Se, and Te) as Counter Electrodes for DyeBensitized Solar Cells: An Overview and Guidelines. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100056	1.6	5
87	Low-temperature solution synthesis of a ZnO nanorod array with a mesoporous surface mediated by cadmium ions. <i>CrystEngComm</i> , 2016 , 18, 8277-8283	3.3	5
86	VO2/ZnO bilayer films with enhanced thermochromic property and durability for smart windows. <i>Applied Surface Science</i> , 2021 , 540, 148414	6.7	5
85	Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12255-12262	7.1	5
84	An enhanced fluorescent ZIF-8 film by capturing guest molecules for light-emitting applications. Journal of Materials Chemistry C, 2021 , 9, 5819-5826	7.1	5
83	Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. <i>Solar Energy</i> , 2021 , 230, 902-911	6.8	5
82	Unique mesoporous amorphous manganese iron oxide with excellent catalytic performance for benzene abatement under UV-vis-IR and IR irradiation. <i>Environmental Science: Nano</i> , 2019 , 6, 1233-1245	7.1	4
81	Phase formation, growth kinetics and optical properties of 0.5ZnO-0.5CdO thin films synthesized by sol-gel spin coating processes. <i>Ceramics International</i> , 2016 , 42, 17843-17852	5.1	4
80	Activity of Echymotrypsin in Cationic and Nonionic Micellar Media: Ultraviolet and Fluorescence Spectroscopic Approach. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 79-87	1.4	4
79	TiOIP3HT Hybrid Solar Cell with Efficient Interface Modification by Organic and Inorganic Materials: A Comparative Study. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 797-801	1.3	4
78	Compositional dependency of upconversion luminescence of Nd3+ doped GettaBftsBr chalcohalide glasses. <i>Journal of Non-Crystalline Solids</i> , 2014 , 406, 27-30	3.9	4
77	Infrared emission properties of Dy3 +-doped and Dy3 +,Tm3 +-codoped chalcohalide glasses. Journal of Non-Crystalline Solids, 2014 , 383, 205-208	3.9	4
76	Pre-treating sputtered TiO2 film by photoelectrocatalysis to increase the performance of photo-activity and photoinduced hydrophilicity. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 224-22	2 1 .1	4
75	Effect of annealing duration and substrates on structure and property of vanadium dioxide films. Journal Wuhan University of Technology, Materials Science Edition, 2014 , 29, 1117-1123	1	4
74	Optimized second-order optical nonlinearity in thermally poled GeS2-Ga2S3-KI chalcohalide glass. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 245-249	2.6	4
73	Upconversion luminescence properties of Er3+ doped GeS2-Ga2S3-KCl chalcohalide glasses. <i>Rare Metals</i> , 2011 , 30, 18-21	5.5	4
72	On the optical properties of amorphous GellaBellBr films prepared by pulsed laser deposition. <i>Applied Surface Science</i> , 2009 , 255, 5952-5956	6.7	4
71	Preparation of polarizing glasses of large size based on the directional alignment of crystal nucleus. <i>Materials Letters</i> , 2008 , 62, 4100-4102	3.3	4

70	Crystal growth and thermal poling of CdS doped lead silicate glasses. <i>Solid State Communications</i> , 2007 , 142, 94-98	1.6	4
69	Thermally induced second harmonic generation in PbOB2O3 glasses. <i>Optics Communications</i> , 2007 , 274, 218-222	2	4
68	Formation and crystallization of As2Te3-HgI2 chalcogenide-halide glasses. <i>Journal of Non-Crystalline Solids</i> , 1995 , 184, 128-132	3.9	4
67	Two-Step Anti-Stokes Photoluminescence of CsPbX3 Nanocrystals. <i>Advanced Optical Materials</i> , 2021 , 9, 2001885	8.1	4
66	Water-Triggered Transformation of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. <i>ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. <i>ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. <i>ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. ACS Applied Materials & Description of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. <i>ACS Applied Materials & Description of Ligand-Physical Research Physical Re</i></i></i></i>	9.5	4
65	Cs2Zr1NTexCl6 Perovskite Microcrystals with Ultrahigh Photoluminescence Quantum Efficiency of 79.46% for High Light Efficiency White Light Emitting Diodes. <i>Advanced Optical Materials</i> , 2021 , 9, 2100	804	4
64	Unraveling the effects of linker substitution on structural, electronic and optical properties of amorphous zeolitic imidazolate frameworks-62 (a-ZIF-62) glasses: a DFT study <i>RSC Advances</i> , 2020 , 10, 14013-14024	3.7	4
63	Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4746-4755	7.8	4
62	Crystallization kinetics evaluated by the modified formula and optical properties of CdO and ZnO in 0.5ZnO-0.5CdO thin films. <i>Journal of Alloys and Compounds</i> , 2017 , 702, 509-519	5.7	3
61	Growth kinetics and optical properties of PbSe quantum dots in dual-phase lithium-aluminum-silicate glass ceramic. <i>Journal of the European Ceramic Society</i> , 2020 , 40, 4122-4128	6	3
60	Morphology tuning of mono-disperse silver nanoparticles by reaction temperature adjustment. Journal Wuhan University of Technology, Materials Science Edition, 2014 , 29, 40-43	1	3
59	Ab initio study of structural and electronic properties of ternary alkali-metal-based semimetal compounds. <i>Computational Materials Science</i> , 2014 , 91, 231-234	3.2	3
58	Controllable Synthesis of ZnO Nanostructures with Various Morphologies. <i>Physics Procedia</i> , 2013 , 48, 235-240		3
57	Effect of solution volume covariation on the growth mechanism of Au nanorods using the seed-mediated method. <i>Acta Materialia</i> , 2015 , 85, 322-330	8.4	3
56	Two-step anodization of maltilayer TiO2 nanotube and its photocatalytic activity under UV light. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 866-870	1	3
55	Visible light photocatalysis via 3D-ordered macroporous TiO2 films sensitized with CdS quantum dots. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 1461-6	1.3	3
54	Effect of heat treatment on 7Na2OØ3B2O3Ø0SiO2 glass. Ceramics International, 2011, 37, 1769-1773	5.1	3
53	Electrodeposition and characterization of CuInSe2 thin films for solar cells. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2007 , 22, 140-143	1	3

(2015-2006)

52	Ultrafast non-linear optical properties of Ge20As25Se55 chalcogenide films. <i>Optics Communications</i> , 2006 , 258, 72-77	2	3
51	Effects of the halogenated imidazolate linker on the fundamental properties of amorphous zeolitic imidazolate frameworks. <i>Journal of Non-Crystalline Solids</i> , 2020 , 536, 120005	3.9	3
50	The effect of Cu dopants on electron transfer to O and the connection with acetone photocatalytic oxidations over nano-TiO. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 8300-8308	3.6	3
49	Effect of Al2O3 on the formation of color centers and CdSe/Cd1\(\mathbb{Z}\)TnxSe quantum dots in SiO2\(\mathbb{N}\)a2O\(\mathbb{D}\)nO glasses. Journal of the American Ceramic Society, 2018, 102, 1726	3.8	3
48	Ultra-High-Sensitive Temperature Sensing Based on Er and Yb Co-Doped Lead-Free Double Perovskite Microcrystals <i>Journal of Physical Chemistry Letters</i> , 2022 , 3623-3630	6.4	3
47	Formation of core/shell PbS/Na_2SrSi_2O_6 nanocrystals in glass. <i>Optical Materials Express</i> , 2016 , 6, 57	8 2.6	2
46	Effect of Ag Nanoparticles Doped in Polymethyl Methacrylate Matrix for Luminescent Solar Concentrator. <i>Key Engineering Materials</i> , 2014 , 599, 291-297	0.4	2
45	Preparation of layered potassium titanate whiskers with large length-diameter ratio by KDC method. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2014 , 29, 669-673	1	2
44	A facile hydrothermal method for the controllable synthesis of TiO2 nanocrystals with tunable shapes. <i>RSC Advances</i> , 2015 , 5, 103386-103393	3.7	2
43	Fabrication of TiO2Microrod with Desired Shapes from Rod-like Titanium Glycolate. <i>Chemistry Letters</i> , 2007 , 36, 1352-1353	1.7	2
42	Structure and second-order nonlinearity of GeS2-Ga2S3-X2S3 (X=P, As, Sb) chalcogenide glasses. <i>Transactions of Nonferrous Metals Society of China</i> , 2006 , 16, s858-s860	3.3	2
41	Laser irradiation induced enhancement on the ultrafast third-order optical nonlinearity of chalcogenide glass. <i>Optical Materials</i> , 2006 , 28, 1020-1024	3.3	2
40	X-ray diffraction and molecular dynamics study of ThF4BaF2LiF glass. <i>Journal of Non-Crystalline Solids</i> , 1995 , 184, 172-176	3.9	2
39	Can Plasmonic Effect Cause an Increase in the Catalytic Reduction of -nitrophenol by Sodium Borohydride over Au Nanorods?. <i>ACS Omega</i> , 2020 , 5, 11998-12004	3.9	2
38	Thermal expansion and crystallization behaviour of magnesium aluminosilicate glasses doped with neodymium ions. <i>Journal of Commonwealth Law and Legal Education</i> , 2016 , 57, 153-157	0.2	2
37	Facile synthesis of silica composite films with good mechanical property for spectrally broadband antireflection coatings. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 628, 127	255	2
36	Influences of TiO2 Addition on the Crystallization Behavior, Microstructure, and Magnetic Properties of Li2O-MnO2-Fe2O3-CaO-P2O5-SiO2 Glasses. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 2040-2050	2.3	1
35	High second-order nonlinearity by p-n junction formation in plasma enhanced chemical vapor deposition deposited hydrogenated amorphous silicon thin films. <i>Applied Physics Letters</i> , 2015 , 106, 06	19045	1

34	Charge carrier transfer in photocatalysis. <i>Interface Science and Technology</i> , 2020 , 103-159	2.3	1
33	Recent Progress on Self-Cleaning Glasses and Integration with Other Functions 2013 , 57-88		1
32	Sol-Gel Process Synthesis and Visible-Light Photocatalytic Degradation Performance of Ag Doped K2Ti4O9. <i>Integrated Ferroelectrics</i> , 2015 , 161, 62-69	0.8	1
31	Improved visible transparency of SIO2/ZNO:AL /CEO2-TIO2/SIO2 multilayer films with high UV absorption and infrared reflection rate. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2015 , 30, 941-946	1	1
30	The synthesis, characterization, photocatalytic evaluation and deactivation behavior of sheet-like nano titania. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 857-860	1	1
29	Effect of heat-treatment on crystalline phase and UV absorption of 60CeO2-40TiO2 thin films by magnetron sputtering. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 881-	885	1
28	Ag/PMMA hollow waveguide for solar energy transmission. <i>Frontiers of Chemical Science and Engineering</i> , 2011 , 5, 303-307	4.5	1
27	Nd3+ sensitized blue upconversion luminescence in Nd3+/Pr3+ co-doped GetablasBr chalcohalide glasses. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2406-2408	3.9	1
26	Second harmonic generation of the 4TiO2[46BaO[50B2O3 transparent crystallized glasses. <i>Journal of Non-Crystalline Solids</i> , 2010 , 356, 2295-2298	3.9	1
25	Effect of pH value on the micro-structures and optical properties of nano-crystalline CuInS2 by solvothermal method. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2010 , 25, 399-4	1 0 2	1
24	Microstructural analysis of Ga2S3DMCl (M = K, Rb, Cs) glasses using Raman scattering. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 1175-1178	3.9	1
23	Electron beam poling in amorphous Ge-doped H:SiO2 films. <i>Journal of Non-Crystalline Solids</i> , 2008 , 354, 472-475	3.9	1
22	Effect of thermal treatment and acid leaching process on pore characteristics of nanometer porous glass. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2007 , 22, 129-131	1	1
21	Influence of alkali content and alkali mixing on the chemical durability of fluorozirconate glasses. Journal of Materials Science, 1993 , 28, 1622-1630	4.3	1
20	Effect of pre-heating temperature on structural and optical properties of sol-gel derived Zn0.8Cd0.2O thin films. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2016 , 31, 120	6 ⁻ 121() 1
19	Kinetics and energetic analysis of the slow dispersive electron transfer from nano-TiO to O by diffusion reflectance and Laplace transform. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 19901-19910	o ^{3.6}	1
18	Acid Solution Processed VO-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows. <i>Materials</i> , 2021 , 14,	3.5	1
17	Thermochromic Ta Doped VO2 Films: Enhanced Luminous Transmittance, Significantly Depressed Phase Transition Temperature and Hysteresis Width. <i>Applied Surface Science</i> , 2021 , 568, 150959	6.7	1

LIST OF PUBLICATIONS

16	Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3\(\text{Bi2O3}\)) composite electrolytes. <i>Ceramics International</i> , 2022 , 48, 8387-8394	5.1	1
15	Intensitive UVIV is-IR driven catalytic activity of Pt supported on hierarchical ZnO porous nanosheets for benzene degradation via novel photothermocatalytic synergetic effect. <i>Journal of Environmental Chemical Engineering</i> , 2022, 10, 107694	6.8	1
14	Material composition and structure design in PCVD silica-based single-mode fiber 2006 , 6352, 696		О
13	Exponential and Gaussian traps in nano-TiO2 and their function in kinetics of the electron transfer to O2. <i>Journal of Applied Physics</i> , 2021 , 130, 035102	2.5	O
12	Influence of Glass Composition on the Luminescence Mechanisms of CdSe Quantum-Dot-Doped Glasses. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18916-18926	3.8	0
11	Ultra-small PbSe Quantum Dots Synthesis by Chemical Nucleation Controlling. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2021 , 36, 478-483	1	O
10	Efficient NiO Impregnated Walnut Shell-Derived Carbon for Dye-Sensitized Solar Cells. <i>ACS Applied Electronic Materials</i> , 2022 , 4, 1063-1071	4	О
9	Observation of the crystalline orientation dependence of the semiconductor the transition for thermal oxidation induced VO2 films over amorphous quartz glasses. <i>AIP Advances</i> , 2021 , 11, 125232	1.5	О
8	pH-Dependent synthesis of two new lead(II) coordination polymers with 4-aminoantipyrine and 5-nitroisophthalate ligands. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2014 , 40, 773-780	1.6	
7	Optical properties of Au nanoparticles coated on surface of glass or anodic aluminum oxide template. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 897-901	1	
6	Effect of the formation of CNTs on the reduction of ilmenite. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 948-951	1	
5	Continuous-Wave Laser Patterning of Three-Dimensional Microstructure in Glasses Containing Silver Nanoparticles. <i>International Journal of Applied Glass Science</i> , 2013 , 4, 5-8	1.8	
4	Preparation and enhancement of second-order nonlinearity of hybrid PMMA/SiO2 glass with Sb2S3 nanocrystals. <i>Journal of Materials Research</i> , 2009 , 24, 2555-2560	2.5	
3	The design and properties of G.656 optical fiber waveguide design. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2007 , 22, 70-73	1	
2	Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications. <i>Topics in Mining, Metallurgy and Materials Engineering</i> , 2021 , 247-292	0.4	
1	3D mesoporous structure assembled from monoclinic M-phase VO nanoflakes with enhanced thermochromic performance <i>RSC Advances</i> , 2021 , 11, 13556-13563	3.7	