
Hui Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600982/publications.pdf Version: 2024-02-01

Ητι Χιλ

#	Article	IF	CITATIONS
1	Covalent organic frameworks: From materials design to electrochemical energy storage applications. Nano Select, 2022, 3, 320-347.	3.7	21
2	Application of MnO2/MWCNT composite in supercapacitors. Materials Today: Proceedings, 2022, 60, 1008-1011.	1.8	10
3	Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water Intercalation/Deintercalation. Advanced Materials, 2022, 34, e2108541.	21.0	22
4	Flexible and Self-Standing Urchinlike V ₂ O ₃ @Carbon Nanofibers toward Ultralong Cycle Lifespan Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 3242-3251.	5.1	14
5	Unblocking Oxygen Charge Compensation for Stabilized Highâ€Voltage Structure in P2â€Type Sodiumâ€ion Cathode. Advanced Science, 2022, 9, e2200498.	11.2	32
6	Regulating the π-π interaction with shortened electron tunneling distance for efficient charge storage. Energy Storage Materials, 2022, 48, 403-411.	18.0	13
7	Electrochemical activation enabling structure reconstruction of Fe-doped MnO2 for enhancing pseudocapacitive storage. Chemical Engineering Journal, 2022, 441, 135967.	12.7	13
8	Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications. Ionics, 2022, 28, 3501-3509.	2.4	10
9	The Shape of Electron Paramagnetic Resonance Lines of Pr0.7Ca0.15Ba0.15MnO3 Manganite. Physics of Metals and Metallography, 2022, 123, 310-313.	1.0	0
10	A fully coupled electrochemical-mechanical-thermal model of all-solid-state thin-film Li-ion batteries. Journal of Power Sources, 2022, 539, 231614.	7.8	9
11	Manganese-based layered oxides for electrochemical energy storage: a review of degradation mechanisms and engineering strategies at the atomic level. Journal of Materials Chemistry A, 2022, 10, 19231-19253.	10.3	14
12	Harnessing the Defects at Heteroâ€Interface of Transition Metal Compounds for Advanced Charge Storage: A Review. Small Structures, 2022, 3, .	12.0	11
13	A novel oneâ€step reactionÂsodiumâ€sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber. , 2021, 3, 440-448.		31
14	LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nature Sustainability, 2021, 4, 392-401.	23.7	156
15	Tunnel Intergrowth Li <i>_x</i> MnO ₂ Nanosheet Arrays as 3D Cathode for Highâ€Performance Allâ€Solidâ€State Thin Film Lithium Microbatteries. Advanced Materials, 2021, 33, e2003524.	21.0	53
16	Retarded layered-to-spinel phase transition in structure reinforced birnessite with high Li content. Science Bulletin, 2021, 66, 219-224.	9.0	9
17	Reversible Insertion of I–Cl Interhalogen in a Graphite Cathode for Aqueous Dual-Ion Batteries. ACS Energy Letters, 2021, 6, 459-467.	17.4	54
18	Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface. Advanced Energy Materials, 2021, 11, 2003599.	19.5	35

#	Article	IF	CITATIONS
19	Soluble Redox Species: Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface (Adv. Energy Mater. 8/2021). Advanced Energy Materials, 2021, 11, 2170033.	19.5	1
20	Smart confinement of MnO enabling highly reversible Mn(II)/Mn(III) redox for asymmetric supercapacitors. Journal of Power Sources, 2021, 495, 229801.	7.8	14
21	Direct View on the Origin of High Li ⁺ Transfer Impedance in Allâ€Solidâ€State Battery. Advanced Functional Materials, 2021, 31, 2103971.	14.9	23
22	Recent advances in coupling carbon-based electrode—Redox electrolyte system. Materials Research Bulletin, 2021, 139, 111249.	5.2	9
23	Carbon-coated single crystal O3-NaFeO2 nanoflakes prepared via topochemical reaction for sodium-ion batteries. Sustainable Materials and Technologies, 2021, 28, e00258.	3.3	13
24	Cobalt sulfide quantum dot embedded in nitrogen/sulfur-doped carbon nanosheets as a polysulfide barrier in Li-S batteries. Journal of Alloys and Compounds, 2021, 870, 159341.	5.5	29
25	Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Materials and Technologies, 2021, 28, e00284.	3.3	3
26	Novel Gramâ€Scale Synthesis of Carbon Nanoâ€Onions from Heavy Oil for Supercapacitors. Advanced Materials Interfaces, 2021, 8, 2101208.	3.7	9
27	Superior performance of calcium birnessite by electrochemical conversion as cathode for aqueous calcium ion battery. Materials Research Bulletin, 2021, 144, 111475.	5.2	13
28	Hierarchical Mg-Birnessite Nanowall Arrays with Enriched (010) Planes for High Performance Aqueous Mg-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120549.	2.9	8
29	Fluorine Triggered Surface and Lattice Regulation in Anatase TiO _{2â~} <i>_x</i> F <i>_x</i> Nanocrystals for Ultrafast Pseudocapacitive Sodium Storage. Small, 2020, 16, e2006366.	10.0	31
30	Two-dimensional metal (oxy)hydroxide and oxide ultrathin nanosheets via liquid phase epitaxy. Energy Storage Materials, 2020, 32, 272-280.	18.0	14
31	Synergistic Interfaceâ€Assisted Electrode–Electrolyte Coupling Toward Advanced Charge Storage. Advanced Materials, 2020, 32, e2005344.	21.0	64
32	Self-standing P2/P3 heterostructured Na0.7CoO2 nanosheet arrays as 3D cathodes for flexible sodium-ion batteries. Journal of Power Sources, 2020, 457, 228059.	7.8	18
33	Layered-tunnel structured cathode for high performance sodium-ion batteries. Functional Materials Letters, 2020, 13, 2051016.	1.2	10
34	Facile synthesis of Mo2N quantum dots embedded N-doped carbon nanosheets composite as advanced anode materials for lithium-ion batteries. Materials Letters, 2020, 276, 128205.	2.6	15
35	A Highâ€Potential Anionâ€Insertion Carbon Cathode for Aqueous Zinc Dualâ€Ion Battery. Advanced Functional Materials, 2020, 30, 2002825.	14.9	64
36	Oxygenâ€Deficient Homoâ€Interface toward Exciting Boost of Pseudocapacitance. Advanced Functional Materials, 2020, 30, 1909546.	14.9	54

#	Article	IF	CITATIONS
37	SnO ₂ /Fe ₂ O ₃ hybrid nanofibers as high performance anodes for lithium-ion batteries. Nanotechnology, 2020, 31, 185402.	2.6	15
38	Ultrastable Sodium–Sulfur Batteries without Polysulfides Formation Using Slit Ultramicropore Carbon Carrier. Advanced Science, 2020, 7, 1903246.	11.2	109
39	Structure reinforced birnessite with an extended potential window for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 8969-8978.	10.3	42
40	The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery. Electrochimica Acta, 2020, 351, 136445.	5.2	85
41	Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. Small, 2019, 15, e1804371.	10.0	202
42	The crystal shape algorithm as a tool for the characterization of agglomerated morphologies: Cubic and hexagonal crystal habits of LiMn2O4. Materials Research Bulletin, 2019, 119, 110535.	5.2	0
43	Effect of the Functionalization of Nitrogen-Doped Carbon Nanotubes on Electrical Conductivity. Russian Journal of Physical Chemistry A, 2019, 93, 1952-1956.	0.6	16
44	Fewâ€Layered Tin Sulfide Nanosheets Supported on Reduced Graphene Oxide as a Highâ€Performance Anode for Potassiumâ€lon Batteries. Small, 2019, 15, e1804806.	10.0	160
45	Rational design of TiO2(B)@C@Fe3O4 core-shell-branch hybrid nanoarrays as advanced 3D anodes for lithium-ion microbatteries. FlatChem, 2019, 17, 100115.	5.6	8
46	Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chemical Engineering Journal, 2019, 373, 485-492.	12.7	146
47	In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Materials, 2019, 23, 358-366.	18.0	85
48	Birnessite Nanosheet Arrays with High K Content as a High apacity and Ultrastable Cathode for Kâ€lon Batteries. Advanced Materials, 2019, 31, e1900060.	21.0	183
49	Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo ₂ O ₄ @NiWS Nanosheets. Crystal Growth and Design, 2019, 19, 1921-1929.	3.0	105
50	Low-temperature synthesized self-supported single-crystalline LiCoO ₂ nanoflake arrays as advanced 3D cathodes for flexible lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 6187-6196.	10.3	49
51	Rambutanâ€Like Hybrid Hollow Spheres of Carbon Confined Co ₃ O ₄ Nanoparticles as Advanced Anode Materials for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1807377.	14.9	89
52	Improving the performance of heterogeneous azeotropic distillation via self-heat recuperation technology. Chemical Engineering Research and Design, 2019, 141, 516-528.	5.6	31
53	Self-standing oxygen-deficient α-MoO3-x nanoflake arrays as 3D cathode for advanced all-solid-state thin film lithium batteries. Journal of Materiomics, 2019, 5, 229-236.	5.7	34
54	3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy, 2019, 56, 463-472.	16.0	94

#	Article	IF	CITATIONS
55	Highly Porous Mn ₃ O ₄ Micro/Nanocuboids with In Situ Coated Carbon as Advanced Anode Material for Lithiumâ€lon Batteries. Small, 2018, 14, e1704296.	10.0	101
56	Carbon shelled porous SnO2-l´ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Materials, 2018, 13, 303-311.	18.0	108
57	Achieving Insertionâ€Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance. Advanced Materials, 2018, 30, e1706640.	21.0	202
58	Boosted crystalline/amorphous Fe2O3-î´ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale. Nano Energy, 2018, 45, 390-397.	16.0	233
59	Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. Journal of Materials Research, 2018, 33, 1155-1166.	2.6	4
60	Selfâ€Standing Porous LiCoO ₂ Nanosheet Arrays as 3D Cathodes for Flexible Liâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1705836.	14.9	114
61	Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Materials, 2018, 13, 134-141.	18.0	98
62	Yolk–Shell NiS ₂ Nanoparticleâ€Embedded Carbon Fibers forÂFlexible Fiberâ€Shaped Sodium Battery. Advanced Energy Materials, 2018, 8, 1800054.	19.5	162
63	Selfâ€Standing 3D Cathodes for Allâ€Solidâ€State Thin Film Lithium Batteries with Improved Interface Kinetics. Small, 2018, 14, e1804149.	10.0	60
64	A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nature Communications, 2018, 9, 5100.	12.8	142
65	Surfaceâ€Dominated Sodium Storage Towards High Capacity and Ultrastable Anode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1805371.	14.9	138
66	Highly efficient sol-gel synthesis for ZnS@N, S co-doped carbon nanosheets with embedded heterostructure for sodium ion batteries. Journal of Power Sources, 2018, 402, 340-344.	7.8	42
67	Conductivity of N-(2-methoxyethyl)-substituted morpholinium- and piperidinium-based ionic liquids and their acetonitrile solutions. Functional Materials Letters, 2018, 11, 1840009.	1.2	4
68	Electrochemical Analysis of the Carbon-Encapsulated Lithium Iron Phosphate Nanochains and Their High-Temperature Conductivity Profiles. ACS Omega, 2018, 3, 6446-6455.	3.5	15
69	<i>In situ</i> conversion of sub-4Ânm Co(OH) ₂ nanosheet arrays from phytic acid-derived Co ₃ (HPO ₄) ₂ (OH) ₂ for superior high loading supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20015-20024.	10.3	35
70	Flexible Mn-decorated NiCo ₂ S ₄ core–shell nanowire arrays for a high performance hybrid supercapacitor electrode with a long cycle life. CrystEngComm, 2018, 20, 4735-4744.	2.6	53
71	Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes. Scientific Reports, 2017, 7, 40927.	3.3	55
72	A facile sol–gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes. Journal of Materials Chemistry A, 2017, 5, 3179-3185.	10.3	81

Ηυι Χια

#	Article	IF	CITATIONS
73	Mesoporous ZnCo 2 O 4 -ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Materials Letters, 2017, 193, 220-223.	2.6	20
74	Fe ₂ O ₃ Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for Highâ€Performance Asymmetric Supercapacitors. Advanced Functional Materials, 2017, 27, 1606728.	14.9	284
75	Facile Synthesis of <scp>FeS₂</scp> Quantumâ€Dots/Functionalized Grapheneâ€Sheet Composites as Advanced Anode Material for Sodiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 73-78.	4.9	23
76	Hierarchically branched TiO 2 @SnO 2 nanofibers as high performance anodes for lithium-ion batteries. Materials Research Bulletin, 2017, 96, 405-412.	5.2	24
77	Highâ€Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na _{0.5} MnO ₂ Nanosheet Assembled Nanowall Arrays. Advanced Materials, 2017, 29, 1700804.	21.0	526
78	Bi 2 S 3 nanoparticles anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Materials Research Bulletin, 2017, 96, 471-477.	5.2	50
79	Phosphate Ion Functionalized Co ₃ O ₄ Ultrathin Nanosheets with Greatly Improved Surface Reactivity for High Performance Pseudocapacitors. Advanced Materials, 2017, 29, 1604167.	21.0	540
80	Jahn–Teller effect in LiMn ₂ O ₄ : influence on charge ordering, magnetoresistance and battery performance. Physical Chemistry Chemical Physics, 2017, 19, 2073-2077.	2.8	30
81	Developing Polymer Cathode Material for the Chloride Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 2535-2540.	8.0	90
82	Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. Journal of Materials Chemistry A, 2017, 5, 2328-2338.	10.3	134
83	Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. Journal of Power Sources, 2017, 341, 427-434.	7.8	116
84	A novel energy-saving pressure swing distillation process based on self-heat recuperation technology. Energy, 2017, 141, 770-781.	8.8	56
85	Nanoconfined Iron Oxychloride Material as a High-Performance Cathode for Rechargeable Chloride Ion Batteries. ACS Energy Letters, 2017, 2, 2341-2348.	17.4	87
86	High Energy and High Power Lithiumâ€lon Capacitors Based on Boron and Nitrogen Dualâ€Doped 3D Carbon Nanofibers as Both Cathode and Anode. Advanced Energy Materials, 2017, 7, 1701336.	19.5	363
87	Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. ACS Nano, 2017, 11, 12658-12667.	14.6	373
88	Nanostructured Iron Oxide/Hydroxideâ€Based Electrode Materials for Supercapacitors. ChemNanoMat, 2016, 2, 588-600.	2.8	82
89	Hybrid electrode materials for energy storage. Materials Technology, 2016, 31, 491-491.	3.0	1
90	Improving the Performance of Heat Pump-Assisted Azeotropic Dividing Wall Distillation. Industrial & Engineering Chemistry Research, 2016, 55, 6454-6464.	3.7	40

#	Article	IF	CITATIONS
91	Black mesoporous Li ₄ Ti ₅ O _{12â^î^} nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries. Journal of Materials Chemistry A, 2016, 4, 17543-17551.	10.3	71
92	Sintered Carbon Nanomaterials: Structural Change and Adsorption Properties. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1719-1731.	2.8	12
93	Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage. Electrochimica Acta, 2016, 214, 1-10.	5.2	27
94	Enhanced Pseudocapacitive Performance of α-MnO ₂ by Cation Preinsertion. ACS Applied Materials & Interfaces, 2016, 8, 33732-33740.	8.0	241
95	Flexible heterostructured supercapacitor electrodes based on α-Fe ₂ O ₃ nanosheets with excellent electrochemical performances. Dalton Transactions, 2016, 45, 12862-12870.	3.3	45
96	Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors. Advanced Functional Materials, 2016, 26, 919-930.	14.9	423
97	Monolayer MoS ₂ –Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. ACS Applied Materials & Interfaces, 2016, 8, 2680-2687.	8.0	191
98	Unique Core–Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo ₂ O ₄ Support for High-Performance Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 6093-6100.	8.0	205
99	Self-standing porous LiMn 2 O 4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy, 2016, 22, 475-482.	16.0	166
100	Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Materials Letters, 2016, 166, 223-226.	2.6	54
101	MnO ₂ nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons, 2016, 1, 109-124.	8.0	82
102	Ultrafine Fe ₂ O ₃ Nanoflakes Grafted on TiO ₂ Nanosheet Arrays as Advanced Anodes for Lithium-Ion Batteries. Science of Advanced Materials, 2016, 8, 1293-1297.	0.7	6
103	Self-Standing 3D Thin Film Cathodes for Micobatteries. ECS Meeting Abstracts, 2016, , .	0.0	0
104	Transmission electron microscopy study of multi-walled carbon nanotubes of different morphology oxidized with nitric acid. Russian Chemical Bulletin, 2015, 64, 2055-2061.	1.5	1
105	One-step hydrothermal synthesis and characterization of LiNi0.5Mn0.5O2nanoparticles. Materials Technology, 2015, 30, A176-A180.	3.0	2
106	Nanowire interwoven NiCo ₂ S ₄ nanowall arrays as promising anodes for lithium ion batteries. Materials Technology, 2015, 30, A53-A57.	3.0	56
107	LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries. Materials Research Bulletin, 2015, 69, 2-6.	5.2	22
108	Retarded phase transition by fluorine doping in Li-rich layered Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material. Journal of Power Sources, 2015, 283, 162-170.	7.8	190

#	Article	IF	CITATIONS
109	Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Scientific Reports, 2015, 5, 11958.	3.3	45
110	Nanoscale carbon materials from hydrocarbons pyrolysis: Structure, chemical behavior, utilisation for non-aqueous supercapacitors. Materials Research Bulletin, 2015, 69, 13-19.	5.2	19
111	Exploration and progress of high-energy supercapacitors and related electrode materials. Science China Technological Sciences, 2015, 58, 1851-1863.	4.0	15
112	Self-Assembled Microspheres Formed from α-MnO ₂ Nanotubes as an Anode Material for Rechargeable Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2015, 15, 7181-7185.	0.9	6
113	Hierarchical Fe ₃ O ₄ @Fe ₂ O ₃ Core–Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 27518-27525.	8.0	256
114	Facile Synthesis of Hematite Quantumâ€Dot/Functionalized Grapheneâ€Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors. Advanced Functional Materials, 2015, 25, 627-635.	14.9	398
115	Hierarchical heterostructures of Ag nanoparticles decorated MnO ₂ nanowires as promising electrodes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1216-1221.	10.3	179
116	Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries. Nanotechnology Reviews, 2014, 3, .	5.8	17
117	Nanostructured Materials for Clean Energy and Environmental Challenges. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	1
118	LiNi _{0.5} Mn _{1.5} O ₄ Nanorod Clusters as Cathode Material for High Energy and High Power Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2014, 14, 7038-7044.	0.9	13
119	Three-dimensional self-supported metal oxides as cathodes for microbatteries. Functional Materials Letters, 2014, 07, 1430003.	1.2	30
120	Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Materials, 2014, 6, e126-e126.	7.9	90
121	Manganese oxide thin films prepared by pulsed laser deposition for thin film microbatteries. Materials Chemistry and Physics, 2014, 143, 720-727.	4.0	50
122	High-performance supercapacitor electrodes based on hierarchical Ti@MnO ₂ nanowire arrays. Chemical Communications, 2014, 50, 2876-2878.	4.1	57
123	High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters, 2014, 122, 193-196.	2.6	65
124	High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. Journal of Power Sources, 2014, 271, 604-613.	7.8	37
125	Hierarchical TiO2-B nanowire@α-Fe2O3 nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Research, 2014, 7, 1797-1808.	10.4	97
126	Branch-structured Bi ₂ S ₃ –CNT hybrids with improved lithium storage capability. Journal of Materials Chemistry A, 2014, 2, 13854-13858.	10.3	82

#	Article	IF	CITATIONS
127	Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification. Electrochimica Acta, 2014, 149, 86-93.	5.2	122
128	On the theory of high rate capability of LiMn2O4 with some preferred orientations: insights from the crystal shape algorithm. Physical Chemistry Chemical Physics, 2014, 16, 2553.	2.8	17
129	1.8 V symmetric supercapacitors developed using nanocrystalline Ru films as electrodes. RSC Advances, 2014, 4, 11111.	3.6	47
130	NH4F surface modification of Li-rich layered cathode materials. Solid State Ionics, 2014, 264, 36-44.	2.7	35
131	LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. Journal of Solid State Chemistry, 2014, 209, 23-28.	2.9	45
132	Ferroelectric domain evolution with temperature in BaTiO3 film on (001) SrTiO3 substrate. Applied Physics Letters, 2013, 103, .	3.3	9
133	Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sciences, 2013, 17, 67-71.	3.2	111
134	Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors. Scientific Reports, 2013, 3, 2978.	3.3	234
135	Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries. Materials Research Bulletin, 2013, 48, 4791-4796.	5.2	26
136	Fe3O4/carbon core–shell nanotubes as promising anode materials for lithium-ion batteries. Journal of Power Sources, 2013, 241, 486-493.	7.8	91
137	TiO ₂ nanowire arrays with mixed phases directly grown on Ti foil and their electrochemical properties as anode material for Li ion batteries. Materials Technology, 2013, 28, 260-264.	3.0	9
138	A Symmetric RuO2â^•RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte. Electrochemical and Solid-State Letters, 2012, 15, A60.	2.2	340
139	Advances in materials processing. Materials Technology, 2012, 27, 2-4.	3.0	0
140	Hierarchical structured TiO2 nano-tubes for formaldehyde sensing. Ceramics International, 2012, 38, 6341-6347.	4.8	57
141	Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage. Industrial & Engineering Chemistry Research, 2012, 51, 11700-11709.	3.7	198
142	CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochimica Acta, 2012, 83, 166-174.	5.2	194
143	Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Progress in Natural Science: Materials International, 2012, 22, 572-584.	4.4	137
144	Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 5006.	6.7	224

#	Article	IF	CITATIONS
145	Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. Journal of Power Sources, 2012, 212, 28-34.	7.8	100
146	Nickel ferrite–graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries. Journal of Power Sources, 2012, 213, 338-342.	7.8	144
147	Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Research Letters, 2012, 7, 33.	5.7	293
148	Synthesis of Birnessite-Type MnO ₂ by the <i>In-Situ</i> Electrochemical Oxidation of Mn ₃ O ₄ Film for Supercapacitors. Nanoscience and Nanotechnology Letters, 2012, 4, 559-563.	0.4	15
149	Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors. Journal of Materials Chemistry, 2011, 21, 15521.	6.7	45
150	Correction to Synthesis of Carbon Nanotube Core/Porous MnO2Sheath Hierarchy Architecture and Its Electrochemical Properties. Crystal Growth and Design, 2011, 11, 3306-3306.	3.0	3
151	Electrochemical performance of CuO nanocrystal film fabricated by room temperature sputtering. Materials Research Bulletin, 2011, 46, 424-427.	5.2	40
152	Nanoporous MnOx thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors. Journal of Power Sources, 2011, 196, 2398-2402.	7.8	18
153	Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 2011, 63, 54-59.	1.9	39
154	Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors. International Journal of Smart and Nano Materials, 2011, , 1-9.	4.2	8
155	MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. Journal of Power Sources, 2010, 195, 4410-4413.	7.8	262
156	Structural and Electrochemical Properties of LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] Thin-Film Electrodes Prepared by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2010, 157, A348.	2.9	20
157	Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 6896.	6.7	413
158	Electrophoretic-deposited CNT/MnO ₂ composites for high-power electrochemical energy storage/conversion applications. Physica Scripta, 2010, T139, 014008.	2.5	17
159	Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 1506.	6.7	193
160	Excellent Performance in Lithium-Ion Battery Anodes: Rational Synthesis of Co(CO ₃) _{0.5} (OH)0.11H ₂ O Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co ₃ O ₄ . ACS Nano, 2010, 4, 1425-1432.	14.6	277
161	ELECTROCHEMICAL PROPERTIES OF BiFeO3 THIN FILMS PREPARED BY PULSED LASER DEPOSITION. Functional Materials Letters, 2009, 02, 163-167.	1.2	22
162	Li diffusion in LiNi0.5Mn0.5O2 thin film electrodes prepared by pulsed laser deposition. Electrochimica Acta, 2009, 54, 5986-5991.	5.2	24

#	Article	IF	CITATIONS
163	Facile Synthesis of Novel Nanostructured MnO2Thin Films and Their Application in Supercapacitors. Nanoscale Research Letters, 2009, 4, 1035-1040.	5.7	68
164	Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. Journal of Power Sources, 2009, 193, 935-938.	7.8	208
165	Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochemistry Communications, 2009, 11, 1539-1542.	4.7	128
166	NASICON-Structured LiGe ₂ (PO ₄) ₃ with Improved Cyclability for High-Performance Lithium Batteries. Journal of Physical Chemistry C, 2009, 113, 20514-20520.	3.1	42
167	Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries. Journal of Alloys and Compounds, 2009, 480, 696-701.	5.5	60
168	IMPROVED CAPACITIVE BEHAVIOR OF MnO ₂ THIN FILMS PREPARED BY ELECTRODEPOSITION ON THE PT SUBSTRATE WITH A MnO _x BUFFER LAYER. Functional Materials Letters, 2009, 02, 13-18.	1.2	36
169	Double-Shelled Nanocapsules of V ₂ O ₅ -Based Composites as High-Performance Anode and Cathode Materials for Li Ion Batteries. Journal of the American Chemical Society, 2009, 131, 12086-12087.	13.7	546
170	Electrochemical Synthesis and Supercapacitive Properties of ε-MnO[sub 2] with Porous/Nanoflaky Hierarchical Architectures. Journal of the Electrochemical Society, 2009, 156, A627.	2.9	62
171	Thin film Li electrolytes for all-solid-state micro-batteries. International Journal of Surface Science and Engineering, 2009, 3, 23.	0.4	33
172	Characterization of LiMn2O4 thin films grown on Si substrates by pulsed laser deposition. Journal of Alloys and Compounds, 2008, 449, 322-325.	5.5	20
173	Novel synthesis and electrochemical behavior of layered LiNi0.5Mn0.5O2. Journal of Alloys and Compounds, 2008, 449, 296-299.	5.5	29
174	Effect of sintering time on the electrochemical properties of spinel LiMn2O4 synthesized by solid-state reaction. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 74-78.	0.2	4
175	Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in microbatteries. Applied Physics Letters, 2008, 92, .	3.3	35
176	Development of electrodes for the application of microbatteries. , 2008, , .		0
177	Phase Transitions and High-Voltage Electrochemical Behavior of LiCoO[sub 2] Thin Films Grown by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2007, 154, A337.	2.9	162
178	Li diffusion in spinel LiNi _{0.5} Mn _{1.5} O ₄ thin films prepared by pulsed laser deposition. Physica Scripta, 2007, T129, 43-48.	2.5	24
179	Electrochemical Properties of Nonstoichiometric LiNi[sub 0.5]Mn[sub 1.5]O[sub 4â~îî] Thin-Film Electrodes Prepared by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2007, 154, A737.	2.9	117
180	Limiting Current Oxygen Sensors with LSF as Dense Diffusion Barrier. Key Engineering Materials, 2007, 336-338, 417-419.	0.4	1

Ηυι Χια

#	Article	IF	CITATIONS
181	The influence of preparation conditions on electrochemical properties of LiNi0.5Mn1.5O4 thin film electrodes by PLD. Electrochimica Acta, 2007, 52, 2822-2828.	5.2	72
182	Properties of amorphous Si thin film anodes prepared by pulsed laser deposition. Materials Research Bulletin, 2007, 42, 1301-1309.	5.2	75
183	Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD. Electrochimica Acta, 2007, 52, 7014-7021.	5.2	71
184	Thin Film Microbatteries Prepared by Pulsed Laser Deposition. Journal of the Korean Physical Society, 2007, 51, 1055.	0.7	11
185	Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD. Journal of Alloys and Compounds, 2006, 417, 304-310.	5.5	48
186	Amorphous LiNiVO4 thin-film anode for microbatteries grown by pulsed laser deposition. Journal of Power Sources, 2006, 159, 685-689.	7.8	9
187	Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources, 2006, 159, 1422-1427.	7.8	227
188	Characterization of Amorphous LiNiVO[sub 4] Thin-Film Anode Grown by Pulsed Laser Deposition. Journal of the Electrochemical Society, 2006, 153, A875.	2.9	14