Zhiliang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600442/publications.pdf

Version: 2024-02-01

		117625]	161849
79	3,214	34		54
papers	citations	h-index		g-index
85	85	85		3876
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chemical Engineering Journal, 2010, 165, 827-834.	12.7	197
2	Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry A, 2013, 1, 11355.	10.3	151
3	Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chemical Engineering Journal, 2015, 276, 365-375.	12.7	141
4	Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect. Chemical Engineering Journal, 2013, 219, 69-77.	12.7	136
5	One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. Journal of Materials Chemistry A, 2013, 1, 4662.	10.3	122
6	Visible-light degradation of sulfonamides by Z-scheme ZnO/g-C3N4 heterojunctions with amorphous Fe2O3 as electron mediator. Journal of Colloid and Interface Science, 2019, 538, 256-266.	9.4	110
7	Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: Combination of photocatalysis and adsorption. Chemical Engineering Journal, 2017, 328, 141-151.	12.7	104
8	Calcined layered double hydroxides/reduced graphene oxide composites with improved photocatalytic degradation of paracetamol and efficient oxidation-adsorption of As(III). Applied Catalysis B: Environmental, 2018, 225, 550-562.	20.2	103
9	Facile synthesis of mesoporous Ce–Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. Journal of Colloid and Interface Science, 2013, 398, 142-151.	9.4	90
10	Fenton-Like Catalysis and Oxidation/Adsorption Performances of Acetaminophen and Arsenic Pollutants in Water on a Multimetal Cu–Zn–Fe-LDH. ACS Applied Materials & Diterfaces, 2016, 8, 25343-25352.	8.0	89
11	One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. Journal of Colloid and Interface Science, 2014, 434, 9-17.	9.4	80
12	Wavelength-dependent effects of carbon quantum dots on the photocatalytic activity of g-C3N4 enabled by LEDs. Chemical Engineering Journal, 2020, 379, 122296.	12.7	80
13	Synthesis and arsenic adsorption performances of ferric-based layered double hydroxide with α-alanine intercalation. Chemical Engineering Journal, 2014, 252, 267-274.	12.7	75
14	Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Sciences, 2010, 22, 1327-1334.	6.1	72
15	Targeted modulation of g-C3N4 photocatalytic performance for pharmaceutical pollutants in water using ZnFe-LDH derived mixed metal oxides: Structure-activity and mechanism. Science of the Total Environment, 2019, 650, 1112-1121.	8.0	70
16	Facile Hydrothermal Synthesis of Nanostructured Hollow Iron–Cerium Alkoxides and Their Superior Arsenic Adsorption Performance. ACS Applied Materials & Lapperior 14016, 14016, 14016, 14025.	8.0	69
17	Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors. Journal of Colloid and Interface Science, 2016, 481, 144-157.	9.4	69
18	Emerging per- and polyfluoroalkyl substances (PFAS) in human milk from Sweden and China. Environmental Sciences: Processes and Impacts, 2020, 22, 2023-2030.	3.5	64

#	Article	IF	Citations
19	Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As(<scp>v</scp>) and Cr(<scp>vi</scp>) removal from aqueous solutions. Dalton Transactions, 2014, 43, 10767-10777.	3.3	59
20	Extensive organohalogen contamination in wildlife from a site in the Yangtze River Delta. Science of the Total Environment, 2016, 554-555, 320-328.	8.0	57
21	Chlorinated Paraffins in Human Milk from Urban Sites in China, Sweden, and Norway. Environmental Science & Environmental Scien	10.0	56
22	3D hollow sphere-like Cu-incorporated LaAlO3 perovskites for peroxymonosulfate activation: Coaction of electron transfer and oxygen defect. Chemical Engineering Journal, 2020, 385, 123935.	12.7	54
23	Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds. Chemical Engineering Journal, 2020, 398, 125538.	12.7	52
24	Efficient removal of several estrogens in water by Fe-hydrochar composite and related interactive effect mechanism of H2O2 and iron with persistent free radicals from hydrochar of pinewood. Science of the Total Environment, 2019, 658, 1013-1022.	8.0	51
25	Efficient degradation of organic pollutants by peroxymonosulfate activated with MgCuFe-layered double hydroxide. RSC Advances, 2019, 9, 2284-2291.	3.6	50
26	Magnetic field assisted adsorption of pollutants from an aqueous solution: A review. Journal of Hazardous Materials, 2021, 408, 124846.	12.4	48
27	Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China. Environmental Pollution, 2016, 219, 932-938.	7.5	47
28	Mgâ€"Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals. Environmental Science and Pollution Research, 2018, 25, 24293-24304.	5.3	43
29	Enhanced adsorption performance of alginate/MXene/CoFe2O4 for antibiotic and heavy metal under rotating magnetic field. Chemosphere, 2021, 284, 131284.	8.2	43
30	Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions. Journal of Environmental Sciences, 2013, 25, 944-953.	6.1	40
31	Fe–nitrogen–doped carbon with dual active sites for efficient degradation of aromatic pollutants via peroxymonosulfate activation. Chemical Engineering Journal, 2022, 427, 130898.	12.7	40
32	Construction of magnetically separable dual Z-scheme g-C3N4/α-Fe2O3/Bi3TaO7 photocatalyst for effective degradation of ciprofloxacin under visible light. Chemical Engineering Journal, 2022, 440, 135840.	12.7	38
33	Enhanced Removal of Veterinary Antibiotic Florfenicol by a Cu-Based Fenton-like Catalyst with Wide pH Adaptability and High Efficiency. ACS Omega, 2019, 4, 1982-1994.	3.5	35
34	Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway. Chemical Engineering Journal, 2020, 401, 126061.	12.7	34
35	Hydrochars from pinewood for adsorption and nonradical catalysis of bisphenols. Journal of Hazardous Materials, 2020, 385, 121548.	12.4	31
36	Synthesis and adsorption performance of lead ion-imprinted micro-beads with combination of two functional monomers. Journal of Environmental Sciences, 2011, 23, 1955-1961.	6.1	28

#	Article	IF	CITATIONS
37	Effect of metal composition in lanthanum-doped ferric-based layered double hydroxides and their calcined products on adsorption of arsenate. RSC Advances, 2014, 4, 5156.	3.6	27
38	Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite. Frontiers of Environmental Science and Engineering, 2016, 10, 28-36.	6.0	27
39	Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Frontiers of Environmental Science and Engineering in China, 2011, 5, 65-75.	0.8	26
40	Size-Controlled microporous SiO2 coated TiO2 nanotube arrays for preferential photoelectrocatalytic oxidation of highly toxic PAEs. Applied Catalysis B: Environmental, 2020, 268, 118400.	20.2	26
41	Enhanced adsorption performance of aspartic acid intercalated Mg-Zn-Fe-LDH materials for arsenite. Dalton Transactions, 2018, 47, 4994-5004.	3.3	25
42	Comparative study on synchronous adsorption of arsenate and fluoride in aqueous solution onto MgAlFe-LDHs with different intercalating anions. RSC Advances, 2018, 8, 33301-33313.	3.6	24
43	Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. ACS Applied Materials & Interfaces, 2020, 12, 42790-42802.	8.0	24
44	Adsorption of Lead and Cadmium on Ca-Deficient Hydroxyapatite. Separation Science and Technology, 2010, 45, 262-268.	2.5	23
45	Calcined CoAl-layered double hydroxide as a heterogeneous catalyst for the degradation of acetaminophen and rhodamine B: activity, stability, and mechanism. Environmental Science and Pollution Research, 2019, 26, 33329-33340.	5.3	22
46	Seasonal variation effects on the formation of trihalomethane during chlorination of water from Yangtze River and associated cancer risk assessment. Journal of Environmental Sciences, 2011, 23, 1503-1511.	6.1	21
47	Decontamination of Arsenic in Actual Water Samples by Calcium Containing Layered Double Hydroxides from a Convenient Synthesis Method. Water (Switzerland), 2018, 10, 1150.	2.7	21
48	Regulable metal-oxo-bridge configurations as electron transfer bridge to promote Cu(II)/Cu(I) redox behavior for efficient peroxymonosulfate activation. Journal of Hazardous Materials, 2021, 410, 124629.	12.4	21
49	Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chemical Engineering Journal, 2022, 429, 132130.	12.7	21
50	Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. Science of the Total Environment, 2022, 819, 153160.	8.0	20
51	A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. Journal of Hazardous Materials, 2022, 430, 128406.	12.4	17
52	Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-аB signaling pathway. Environment International, 2022, 163, 107209.	10.0	17
53	Iron Oxide Supported Sulfhydrylâ€Functionalized Multiwalled Carbon Nanotubes for Removal of Arsenite from Aqueous Solution. ChemPlusChem, 2015, 80, 740-748.	2.8	16
54	In Situ Oxidation and Efficient Simultaneous Adsorption of Arsenite and Arsenate by Mg–Fe–LDH with Persulfate Intercalation. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	16

#	Article	IF	CITATIONS
55	Occurrence of polybrominated diphenyl ethers in floor and elevated surface house dust from Shanghai, China. Environmental Science and Pollution Research, 2018, 25, 18049-18058.	5.3	16
56	Efficient organics heterogeneous degradation by spinel CuFe2O4 supported porous carbon nitride catalyst: Multiple electron transfer pathways for reactive oxygen species generation. Chemosphere, 2022, 300, 134511.	8.2	16
57	Mo2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation. Chemosphere, 2022, 287, 132047.	8.2	15
58	A novel pollution pattern: Highly chlorinated biphenyls retained in Black-crowned night heron (Nycticorax nycticorax) and Whiskered tern (Chlidonias hybrida) from the Yangtze River Delta. Chemosphere, 2016, 150, 491-498.	8.2	14
59	Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China. Environmental Science and Pollution Research, 2017, 24, 14847-14856.	5. 3	13
60	Selective Removal of the Genotoxic Compound 2-Aminopyridine in Water using Molecularly Imprinted Polymers Based on Magnetic Chitosan and \hat{l}^2 -Cyclodextrin. International Journal of Environmental Research and Public Health, 2017, 14, 991.	2.6	12
61	Presence and Health Risks of Obsolete and Emerging Pesticides in Paddy Rice and Soil from Thailand and China. International Journal of Environmental Research and Public Health, 2020, 17, 3786.	2.6	12
62	Stepwise carbonization of nanocellulose to N-doped carbons with structural transformation and enhanced peroxymonosulfate activation. Chemical Engineering Journal, 2021, 407, 127185.	12.7	12
63	Carbonaceous composite materials from calcination of azo dye-adsorbed layered double hydroxide with enhanced photocatalytic efficiency for removal of Ibuprofen in water. Environmental Sciences Europe, 2020, 32, .	5. 5	10
64	Removal of Arsenate from Aqueous Solution by Manganese and Iron (hydr)oxides Coated Resin. Separation Science and Technology, 2010, 46, 130-136.	2.5	9
65	Occurrence and risk evaluation of organophosphorus flame retardants in two urban rivers in Yangtze River Delta. Environmental Monitoring and Assessment, 2021, 193, 146.	2.7	9
66	A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis?. Environmental Sciences: Processes and Impacts, 2022, 24, 1060-1070.	3.5	9
67	Polybrominated diphenyl ethers and its methoxylated analogues in biota and sediment samples from two freshwater lakes in Yangtze River delta. Environmental Earth Sciences, 2017, 76, 1.	2.7	8
68	Cu-O-incorporation design for promoted heterogeneous catalysis: synergistic effect of surface adsorption and catalysis towards efficient bisphenol A removal. Applied Surface Science, 2021, 569, 151107.	6.1	8
69	Promoted peroxymonosulfate activation by electron transport channel construction for rapid Cu(<scp>ii</scp>)/Cu(<scp>i</scp>) redox couple circulation. Environmental Science: Nano, 2021, 8, 2618-2628.	4.3	7
70	Hyper-spectrum models for monitoring water quality in Dianshan Lake, China. Chinese Journal of Oceanology and Limnology, 2009, 27, 142-146.	0.7	5
71	Microwave enhanced stabilization of copper in artificially contaminated soil. Frontiers of Environmental Science and Engineering in China, 2011, 5, 205-211.	0.8	5
72	Novel sphere-like copper bismuth oxide fabricated via ethylene glycol-introduced solvothermal method with improved adsorptive and photocatalytic performance in sulfamethazine removal. Environmental Science and Pollution Research, 2022, 29, 47159-47173.	5. 3	4

#	Article	IF	CITATIONS
73	Identification of Cytotoxicity Intermediate Products and Degradation Pathways for Microcystins Using Low-Frequency Ultrasonic Irradiation. Water, Air, and Soil Pollution, 2012, 223, 5027-5038.	2.4	2
74	Reduction in Arsenic Exposure by Domestic Water Purification Devices in Shanghai Area and Related Health Risk Assessment. Water (Switzerland), 2021, 13, 2916.	2.7	2
75	Efficient Vanadate Removal by Mg-Fe-Ti Layered Double Hydroxide. Water (Switzerland), 2022, 14, 2090.	2.7	2
76	Monitoring and Risk Analysis of Heavy Metals in Sediment and Fish from South Taihu Lake. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	1
77	Concentrations and Distribution of Heavy Metals in South Taihu Lake. , 2010, , .		O
78	Extraction of Heavy Metals from Sewage Sludge with Phosphoric Acid. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
79	Notice of Retraction: Concentrations, Patterns and Risk Assessment of Representative Organochlorines in Biotic Samples from Taihu Lake, China. , $2011, \ldots$		0