
Birgitte Rahbek Kornum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600363/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex-related differences within sleep–wake dynamics, cataplexy, and EEG fast-delta power in a narcolepsy mouse model. Sleep, 2022, , .	1.1	10
2	The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112225119.	7.1	9
3	Narcolepsy Type I as an autoimmune disorder. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 161-172.	1.8	11
4	High nocturnal sleep fragmentation is associated with low T lymphocyte P2Y11 protein levels in narcolepsy type 1. Sleep, 2021, 44, .	1.1	5
5	Pre-treatment of blood samples reveal normal blood hypocretin/orexin signal in narcolepsy type 1. Brain Communications, 2021, 3, fcab050.	3.3	2
6	GABA _A receptor β ₁ â€subunit knockâ€out mice show increased delta power in NREM sleep and decreased theta power in REM sleep. European Journal of Neuroscience, 2021, 54, 4445-4455.	2.6	4
7	GHB analogs confer neuroprotection through specific interaction with the CaMKIIÎ \pm hub domain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
8	Emerging therapeutic targets for narcolepsy. Expert Opinion on Therapeutic Targets, 2021, 25, 559-572.	3.4	6
9	Diagnostic value of actigraphy in hypersomnolence disorders. Sleep Medicine, 2021, 85, 1-7.	1.6	1
10	Narcolepsy type 1 patients have lower levels of effector memory CD4+ T cells compared to their siblings when controlling for H1N1-(Pandemrixâ,,¢)-vaccination and HLA DQB1â^—06:02 status. Sleep Medicine, 2021, 85, 271-279.	1.6	7
11	Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature Communications, 2020, 11, 4458.	12.8	34
12	Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. Journal of Neuroscience, 2020, 40, 2371-2380.	3.6	29
13	The case for narcolepsy as an autoimmune disease. Expert Review of Clinical Immunology, 2020, 16, 231-233.	3.0	7
14	Multi-omics characterization of a diet-induced obese model of non-alcoholic steatohepatitis. Scientific Reports, 2020, 10, 1148.	3.3	39
15	Narcolepsy type 1: what have we learned from immunology?. Sleep, 2020, 43, .	1.1	16
16	Altered surface expression of P2Y11 receptor with narcolepsy-associated mutations. Pharmacological Reports, 2019, 71, 926-928.	3.3	2
17	CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nature Communications, 2019, 10, 837.	12.8	80
18	Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease. Sleep Medicine, 2018, 44, 53-60.	1.6	13

#	Article	IF	CITATIONS
19	N-terminal tagging of human P2X7 receptor disturbs calcium influx and dye uptake. Purinergic Signalling, 2018, 14, 83-90.	2.2	1
20	The wake-promoting drug Modafinil prevents motor impairment in sickness behavior induced by LPS in mice: Role for dopaminergic D1 receptor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 468-476.	4.8	22
21	Increased interferon-mediated immunity following in vitro and in vivo Modafinil treatment on peripheral immune cells. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 297-305.	4.8	5
22	DNMT1 regulates expression of MHC class I in post-mitotic neurons. Molecular Brain, 2018, 11, 36.	2.6	18
23	Human P2Y11 Expression Level Affects Human P2X7 Receptor-Mediated Cell Death. Frontiers in Immunology, 2018, 9, 1159.	4.8	17
24	Novel method for evaluation of eye movements in patients with narcolepsy. Sleep Medicine, 2017, 33, 171-180.	1.6	11
25	Narcolepsy. Nature Reviews Disease Primers, 2017, 3, 16100.	30.5	185
26	Absence of autoreactive CD4 + T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. Journal of Neuroimmunology, 2017, 309, 7-11.	2.3	19
27	Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain, 2017, 140, 1657-1668.	7.6	27
28	Sleep–wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels. Sleep Medicine, 2017, 34, 1-6.	1.6	12
29	Sleep spindle density in narcolepsy. Sleep Medicine, 2017, 34, 40-49.	1.6	9
30	Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. Journal of Clinical Sleep Medicine, 2017, 13, 235-243.	2.6	3
31	Cerebrospinal Fluid Hypocretin-1 (Orexin-A) Level Fluctuates with Season and Correlates with Day Length. PLoS ONE, 2016, 11, e0151288.	2.5	23
32	The European Narcolepsy Network (<scp>EU</scp> â€ <scp>NN</scp>) database. Journal of Sleep Research, 2016, 25, 356-364.	3.2	47
33	Cerebrospinal Fluid Biomarkers of Neurodegeneration Are Decreased or Normal in Narcolepsy. Sleep, 2016, 40, .	1.1	13
34	Neurobasal media facilitates increased specificity of siRNA-mediated knockdown in primary cerebellar cultures. Journal of Neuroscience Methods, 2016, 274, 116-124.	2.5	2
35	Validation of antibodies for neuroanatomical localization of the P2Y11 receptor in macaque brain. Journal of Chemical Neuroanatomy, 2016, 78, 25-33.	2.1	8
36	Monozygotic twins discordant for narcolepsy type 1 and multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e249.	6.0	7

#	Article	IF	CITATIONS
37	A critical look at the function of the P2Y11 receptor. Purinergic Signalling, 2016, 12, 427-437.	2.2	62
38	Precipitants of Narcolepsy: Vaccines and Infections. , 2016, , 25-33.		1
39	An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus. Neuroscience, 2015, 310, 354-361.	2.3	10
40	Type 1 narcolepsy: a CD8 ⁺ T cell–mediated disease?. Annals of the New York Academy of Sciences, 2015, 1351, 80-88.	3.8	15
41	Cerebrospinal fluid cytokine levels in type 1 narcolepsy patients very close to onset. Brain, Behavior, and Immunity, 2015, 49, 54-58.	4.1	29
42	HLA-DPB1 and HLA Class I Confer Risk of and Protection from Narcolepsy. American Journal of Human Genetics, 2015, 96, 136-146.	6.2	125
43	EIF3G is associated with narcolepsy across ethnicities. European Journal of Human Genetics, 2015, 23, 1573-1580.	2.8	21
44	Serum cytokine levels in Kleine–Levin syndrome. Sleep Medicine, 2015, 16, 961-965.	1.6	16
45	Does autoreactivity have a role in narcolepsy?. Lancet Neurology, The, 2014, 13, 1072-1073.	10.2	17
46	miRNA profiles in cerebrospinal fluid from patients with central hypersomnias. Journal of the Neurological Sciences, 2014, 347, 199-204.	0.6	13
47	Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurology, The, 2014, 13, 600-613.	10.2	229
48	miRNA Profiles in Plasma from Patients with Sleep Disorders Reveal Dysregulation of miRNAs in Narcolepsy and Other Central Hypersomnias. Sleep, 2014, 37, 1525-1533.	1.1	29
49	5â€HT radioligands for human brain imaging with PET and SPECT. Medicinal Research Reviews, 2013, 33, 54-111.	10.5	138
50	CD4 ⁺ T Cell Autoimmunity to Hypocretin/Orexin and Cross-Reactivity to a 2009 H1N1 Influenza A Epitope in Narcolepsy. Science Translational Medicine, 2013, 5, 216ra176.	12.4	83
51	ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy. PLoS Genetics, 2013, 9, e1003270.	3.5	206
52	Early IVIg treatment has no effect on post-H1N1 narcolepsy phenotype or hypocretin deficiency. Neurology, 2012, 79, 102-103.	1.1	41
53	Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Human Molecular Genetics, 2012, 21, 2205-2210.	2.9	225
54	DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status. Human Immunology, 2012, 73, 405-410.	2.4	16

#	Article	IF	CITATIONS
55	Predictors of Hypocretin (Orexin) Deficiency in Narcolepsy Without Cataplexy. Sleep, 2012, 35, 1247-1255.	1.1	182
56	Common variants in P2RY11 are associated with narcolepsy. Nature Genetics, 2011, 43, 66-71.	21.4	215
57	Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Current Opinion in Neurobiology, 2011, 21, 897-903.	4.2	123
58	An approach for serotonin depletion in pigs: Effects on serotonin receptor binding. Synapse, 2011, 65, 136-145.	1.2	18
59	Synthesis and biological evaluation of ¹²⁵ I/ ¹²³ Iâ€labelled analogues of citalopram and escitalopram as potential radioligands for imaging of the serotonin transporter. Journal of Labelled Compounds and Radiopharmaceuticals, 2011, 54, 185-190.	1.0	2
60	Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neuroscience and Biobehavioral Reviews, 2011, 35, 437-451.	6.1	97
61	Radiosynthesis and Evaluation of 11C-CIMBI-5 as a 5-HT2A Receptor Agonist Radioligand for PET. Journal of Nuclear Medicine, 2010, 51, 1763-1770.	5.0	48
62	Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Experimental Neurology, 2010, 222, 70-85.	4.1	23
63	Species Differences in Blood-Brain Barrier Transport of Three Positron Emission Tomography Radioligands with Emphasis on P-Glycoprotein Transport. Drug Metabolism and Disposition, 2009, 37, 635-643.	3.3	305
64	Evaluation of the Novel 5-HT ₄ Receptor PET Ligand [¹¹ C]SB207145 in the Göttingen Minipig. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 186-196.	4.3	52
65	A novel spatial Delayed Non-Match to Sample (DNMS) task in the Göttingen minipig. Behavioural Brain Research, 2009, 196, 93-98.	2.2	15
66	The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs. Behavioural Brain Research, 2007, 181, 210-217.	2.2	34
67	Central serotonin depletion affects rat brain areas differently: A qualitative and quantitative comparison between different treatment schemes. Neuroscience Letters, 2006, 392, 129-134.	2.1	34
68	Serotonin depletion results in a decrease of the neuronal activation caused by rivastigmine in the rat hippocampus. Brain Research, 2006, 1073-1074, 262-268.	2.2	7
69	The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Research, 2003, 959, 58-67.	2.2	157
70	Attenuation and scatter correction in myocardial SPET: improved diagnostic accuracy in patients with suspected coronary artery disease. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 1438-1442.	6.4	23