
Min Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360035/publications.pdf Version: 2024-02-01

MIN WANC

#	Article	IF	CITATIONS
1	Polyphenols extracted from Shanxiâ€aged vinegar exert hypolipidemic effects on OAâ€induced HepG2 cells via the PPARαâ€LXRαâ€ABCA1 pathway. Journal of Food Biochemistry, 2022, 46, e14029.	1.2	9
2	Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. Journal of Functional Foods, 2022, 93, 105078.	1.6	5
3	The anti-diabetic activity of polyphenols-rich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chemistry, 2022, 393, 133443.	4.2	15
4	Nutrition, Bioactive Components, and Hepatoprotective Activity of Fruit Vinegar Produced from Ningxia Wolfberry. Molecules, 2022, 27, 4422.	1.7	3
5	Polyphenol-rich extract of Zhenjiang aromatic vinegar ameliorates high glucose-induced insulin resistance by regulating JNK-IRS-1 and PI3K/Akt signaling pathways. Food Chemistry, 2021, 335, 127513.	4.2	34
6	Combination of steam explosion and ionic liquid pretreatments for efficient utilization of fungal chitin from citric acid fermentation residue. Biomass and Bioenergy, 2021, 145, 105967.	2.9	13
7	Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice. Food Research International, 2021, 140, 110064.	2.9	45
8	Polyphenols Extracted from Shanxi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules, 2021, 26, 2745.	1.7	9
9	Elucidation and Regulation of Polyphenols in the Smoking Process of Shanxi Aged Vinegar. Foods, 2021, 10, 1518.	1.9	3
10	Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C17-hydroxylated steroids. Applied and Environmental Microbiology, 2021, 87, e0032121.	1.4	7
11	Coexpression of VHb and MceG genes in Mycobacterium sp. Strain LZ2 enhances androstenone production via immobilized repeated batch fermentation. Bioresource Technology, 2021, 342, 125965.	4.8	11
12	Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydrate Polymers, 2020, 230, 115605.	5.1	29
13	Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods, 2020, 64, 103681.	1.6	94
14	Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats. Journal of Functional Foods, 2020, 74, 104152.	1.6	19
15	GC × GC-MS analysis and hypolipidemic effects of polyphenol extracts from Shanxi-aged vinegar in rats under a high fat diet. Food and Function, 2020, 11, 7468-7480.	2.1	18
16	Analysis and control of microbial gas production in fermented chili paste. Journal of Food Processing and Preservation, 2020, 44, e14806.	0.9	7
17	The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Applied and Environmental Microbiology, 2020, 86, .	1.4	21
18	Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase. Scientific Reports, 2020, 10, 4329.	1.6	11

Min Wang

#	Article	IF	CITATIONS
19	Vinegar extract ameliorates alcohol-induced liver damage associated with the modulation of gut microbiota in mice. Food and Function, 2020, 11, 2898-2909.	2.1	39
20	Initial Analysis on the Characteristics and Synthesis of Exopolysaccharides from Sclerotium rolfsii with Different Sugars as Carbon Sources. Polymers, 2020, 12, 348.	2.0	11
21	Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods, 2020, 9, 166.	1.9	58
22	Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresource Technology, 2020, 309, 123307.	4.8	17
23	Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Microbial Cell Factories, 2020, 19, 13.	1.9	16
24	Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. Journal of Functional Foods, 2019, 60, 103448.	1.6	19
25	Economical production of androstenedione and 9α-hydroxyandrostenedione using untreated cane molasses by recombinant mycobacteria. Bioresource Technology, 2019, 290, 121750.	4.8	21
26	Effects of Organic Acids, Amino Acids and Phenolic Compounds on Antioxidant Characteristic of Zhenjiang Aromatic Vinegar. Molecules, 2019, 24, 3799.	1.7	52
27	Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum. Bioresource Technology, 2019, 279, 209-217.	4.8	32
28	Production of 5α-androstene-3,17-dione from phytosterols by co-expression of 5α-reductase and glucose-6-phosphate dehydrogenase in engineered <i>Mycobacterium neoaurum</i> . Green Chemistry, 2019, 21, 1809-1815.	4.6	12
29	Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation. Bioprocess and Biosystems Engineering, 2019, 42, 933-940.	1.7	9
30	A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresource Technology, 2019, 283, 242-250.	4.8	18
31	Unravelling the composition and envisaging the formation of sediments in traditional Chinese vinegar. International Journal of Food Science and Technology, 2019, 54, 2927-2938.	1.3	6
32	Changes of Physicochemical, Bioactive Compounds and Antioxidant Capacity during the Brewing Process of Zhenjiang Aromatic Vinegar. Molecules, 2019, 24, 3935.	1.7	27
33	Effect of β-cyclodextrins Derivatives on Steroids Biotransformation by Arthrobacter simplex. Applied Biochemistry and Biotechnology, 2018, 185, 1004-1013.	1.4	5
34	Influence of imidazoliumâ€based ionic liquids on steroid biotransformation by <i>Arthrobacter simplex</i> . Journal of Chemical Technology and Biotechnology, 2018, 93, 426-431.	1.6	4
35	Chemical Composition and Antioxidant Characteristic of Traditional and Industrial Zhenjiang Aromatic Vinegars during the Aging Process. Molecules, 2018, 23, 2949.	1.7	32
36	Evaluation of Nutritional Compositions, Bioactive Compounds, and Antioxidant Activities of Shanxi Aged Vinegars During the Aging Process. Journal of Food Science, 2018, 83, 2638-2644.	1.5	19

Min Wang

#	Article	IF	CITATIONS
37	IrrE Improves Organic Solvent Tolerance and î" ¹ -Dehydrogenation Productivity of <i>Arthrobacter simplex</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 5210-5220.	2.4	18
38	Overexpression of cytochrome p450 125 in <i>Mycobacterium</i> : a rational strategy in the promotion of phytosterol biotransformation. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 857-867.	1.4	14
39	Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response. Nutrients, 2018, 10, 805.	1.7	36
40	Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979. Applied Biochemistry and Biotechnology, 2017, 182, 1564-1574.	1.4	13
41	Protective effects of Shanxi aged vinegar against hydrogen peroxide-induced oxidative damage in LO2 cells through Nrf2-mediated antioxidant responses. RSC Advances, 2017, 7, 17377-17386.	1.7	42
42	Screening for strains with 11α-hydroxylase activity for 17α-hydroxy progesterone biotransformation. Steroids, 2017, 124, 67-71.	0.8	8
43	Biocatalyst-mediated production of 11,15-dihydroxy derivatives of androst-1,4-dien-3,17-dione. Journal of Bioscience and Bioengineering, 2017, 123, 692-697.	1.1	5
44	Antioxidant Activity of Chinese Shanxi Aged Vinegar and Its Correlation with Polyphenols and Flavonoids During the Brewing Process. Journal of Food Science, 2017, 82, 2479-2486.	1.5	33
45	Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Scientific Reports, 2017, 7, 9240.	1.6	63
46	Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-î"1-dehydrogenase from Mycobacterium neoaurum. World Journal of Microbiology and Biotechnology, 2017, 33, 146.	1.7	11
47	Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation. Microbial Cell Factories, 2017, 16, 182.	1.9	40
48	Effects of two kinds of imidazolium-based ionic liquids on the characteristics of steroid-transformation Arthrobacter simplex. Microbial Cell Factories, 2016, 15, 118.	1.9	8
49	The effect of 3-ketosteroid-Δ1-dehydrogenase isoenzymes on the transformation of AD to 9α-OH-AD by <i>Rhodococcus rhodochrous</i> DSM43269. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1303-1311.	1.4	15
50	Genetic differences in <i>ksdD</i> influence on the ADD/AD ratio of <i>Mycobacterium neoaurum</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 507-513.	1.4	27
51	Hydroxypropyl-β-cyclodextrin-mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex. Applied Microbiology and Biotechnology, 2015, 99, 387-397.	1.7	24
52	Dynamics and diversity of microbial community succession inÂtraditional fermentation of Shanxi aged vinegar. Food Microbiology, 2015, 47, 62-68.	2.1	87
53	Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresource Technology, 2013, 148, 325-333.	4.8	78
54	Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of <i>Mycobacterium neoaurum</i> . Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1253-1259.	1.4	43

	Min WA	Min Wang		
#	Article	IF	CITATIONS	
55	The influence of host–guest inclusion complex formation on the biotransformation of cortisone acetate Δ1-dehydrogenation. Journal of Steroid Biochemistry and Molecular Biology, 2009, 117, 146-151.	1.2	28	