Wenhu Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600006/publications.pdf Version: 2024-02-01

WENHU CUO

#	Article	IF	CITATIONS
1	Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytologist, 2016, 209, 1747-1756.	3.5	352
2	<i>Ginkgo</i> and <i>Welwitschia</i> Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution. Molecular Biology and Evolution, 2016, 33, 1448-1460.	3.5	151
3	Unprecedented Heterogeneity in the Synonymous Substitution Rate within a Plant Genome. Molecular Biology and Evolution, 2014, 31, 1228-1236.	3.5	103
4	Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evolutionary Biology, 2013, 13, 8.	3.2	91
5	Predominant and Substoichiometric Isomers of the Plastid Genome Coexist within Juniperus Plants and Have Shifted Multiple Times during Cupressophyte Evolution. Genome Biology and Evolution, 2014, 6, 580-590.	1.1	91
6	Complete mitochondrial genomes from the ferns <i>Ophioglossum californicum</i> and <i>Psilotum nudum</i> are highly repetitive with the largest organellar introns. New Phytologist, 2017, 213, 391-403.	3.5	83
7	High and Variable Rates of Repeat-Mediated Mitochondrial Genome Rearrangement in a Genus of Plants. Molecular Biology and Evolution, 2018, 35, 2773-2785.	3.5	60
8	Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants. PLoS ONE, 2015, 10, e0117075.	1.1	58
9	Evolution of Plant Mitochondrial Intron-Encoded Maturases: Frequent Lineage-Specific Loss and Recurrent Intracellular Transfer to the Nucleus. Journal of Molecular Evolution, 2013, 77, 43-54.	0.8	39
10	Extensive ShiftsÂfrom <i>Cis</i> - to <i>Trans</i> -splicing of Gymnosperm Mitochondrial Introns. Molecular Biology and Evolution, 2020, 37, 1615-1620.	3.5	32
11	Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Molecular Phylogenetics and Evolution, 2021, 162, 107217.	1.2	23
12	Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis. Science China Life Sciences, 2019, 62, 498-506.	2.3	19
13	Multiple origins of endosymbionts in Chlorellaceae with no reductive effects on the plastid or mitochondrial genomes. Scientific Reports, 2017, 7, 10101.	1.6	17
14	Molecular evolution of PKD2 gene family in mammals. Genetica, 2009, 137, 77-86.	0.5	7
15	Molecular evolution of candidate sour taste receptor gene <i>PKD1L3</i> in mammals. Genome, 2011, 54, 890-897.	0.9	3