List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599956/publications.pdf Version: 2024-02-01

ΔΝΝΑ SANDAK

#	Article	IF	CITATIONS
1	Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Material Science and Engineering, 2022, 17, 230-241.	1.1	23
2	Pre-Service and In-Service Teachers' Views on Gamification. International Journal of Emerging Technologies in Learning, 2022, 17, 83-103.	0.8	6
3	How do Slovenian Educators feel about Gamification? Interested to Know More. Education and Self Development, 2022, 17, 99-109.	0.2	0
4	Characterization and classification of Pinus oleoresin samples according to Pinus species, tapping method, and geographical origin based on chemical composition and chemometrics. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102340.	1.5	4
5	Characterization of the Compounds Released in the Gaseous Waste Stream during the Slow Pyrolysis of Hemp (Cannabis sativa L.). Molecules, 2022, 27, 2794.	1.7	1
6	One-Step Lignin Refining Process: The Influence of the Solvent Nature on the Properties and Quality of Fractions. Polymers, 2022, 14, 2363.	2.0	4
7	Comparative Performance of NIR-Hyperspectral Imaging Systems. Foundations, 2022, 2, 523-540.	0.4	3
8	Fractionation of lignin using organic solvents: A combined experimental and theoretical study. International Journal of Biological Macromolecules, 2021, 168, 792-805.	3.6	39
9	Energy Retrofitting Opportunities Using Renewable Materials—Comparative Analysis of the Current Frameworks in Bosnia-Herzegovina and Slovenia. Sustainability, 2021, 13, 603.	1.6	6
10	Characterization of Arctic Driftwood as Naturally Modified Material. Part 1: Machinability. Coatings, 2021, 11, 278.	1.2	2
11	Nondestructive Evaluation of Heritage Object Coatings with Four Hyperspectral Imaging Systems. Coatings, 2021, 11, 244.	1.2	12
12	Revealing of Supercritical Water Gasification Process of Lignin by Reactive Force Field Molecular Dynamics Simulations. Processes, 2021, 9, 714.	1.3	10
13	Multi-sensor data fusion and parallel factor analysis reveals kinetics of wood weathering. Talanta, 2021, 225, 122024.	2.9	9
14	Impact of drying process on kraft lignin: lignin-water interaction mechanism study by 2D NIR correlation spectroscopy. Journal of Materials Research and Technology, 2021, 12, 159-169.	2.6	22
15	Hybrid Approach for Wood Modification: Characterization and Evaluation of Weathering Resistance of Coatings on Acetylated Wood. Coatings, 2021, 11, 658.	1.2	7
16	Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering. Coatings, 2021, 11, 701.	1.2	11
17	Special Issue "Wood Modification: Characterization, Modelling, and Applications― Coatings, 2021, 11, 869.	1.2	1
18	An Exploratory Study of Consumers' Knowledge and Attitudes about Lignin-Based Sunscreens and Bio-Based Skincare Products. Cosmetics, 2021, 8, 78.	1.5	9

#	Article	IF	CITATIONS
19	A Method for Accelerated Natural Weathering of Wood Subsurface and Its Multilevel Characterization. Coatings, 2021, 11, 126.	1.2	14
20	Feasibility of portable NIR spectrometer for quality assurance in glue-laminated timber production. Construction and Building Materials, 2021, 308, 125026.	3.2	10
21	Beyond spectral range – Welcome to join NIRITALIA 2020. NIR News, 2020, 31, 5-7.	1.6	0
22	Hydrophobization and Photo-Stabilization of Radiata Pinewood: The Effect of the Esterification on Thermal and Mechanical Properties. Forests, 2020, 11, 1243.	0.9	4
23	On-Line Measurement of Wood Surface Smoothness. Drvna Industrija, 2020, 71, 193-200.	0.3	8
24	Multiscale modelling investigation of wood modification with acetic anhydride. Physical Chemistry Chemical Physics, 2020, 22, 28448-28458.	1.3	13
25	FTIR analysis of chemical changes in wood induced by steaming and longitudinal compression. Cellulose, 2020, 27, 6811-6829.	2.4	22
26	Trends and perspectives in the use of timber and derived products in building façades. , 2020, , 333-374.		3
27	Development of Low-Cost Portable Spectrometers for Detection of Wood Defects. Sensors, 2020, 20, 545.	2.1	29
28	PREFABRICATED TIMBER PANELS APPLICATION POSSIBILITIES FOR THE ENERGY REFURBISHMENT OF RESIDENTIAL BUILDINGS ENVELOPE IN BOSNIA-HERZEGOVINA AND SLOVENIA. , 2020, 14, .	0.0	0
29	Damage progression analysis in a historical timber framed wall under cyclic loads through an image-based tracking method. Construction and Building Materials, 2019, 199, 483-491.	3.2	4
30	Portfolio of Bio-Based Façade Materials. Environmental Footprints and Eco-design of Products and Processes, 2019, , 155-177.	0.7	2
31	Bio-based Building Skin. Environmental Footprints and Eco-design of Products and Processes, 2019, , .	0.7	35
32	Manufacturing fit-for-purpose paper packaging containers with controlled biodegradation rate by optimizing addition of natural fillers. Cellulose, 2019, 26, 2673-2688.	2.4	9
33	Chemical and appearance changes of wood due to artificial weathering – Dose–response model. Journal of Near Infrared Spectroscopy, 2019, 27, 26-37.	0.8	13
34	Service Life Performance. Environmental Footprints and Eco-design of Products and Processes, 2019, , 127-153.	0.7	0
35	Prototype of the Near-Infrared Spectroscopy Expert System for Particleboard Identification. Journal of Spectroscopy, 2018, 2018, 1-11.	0.6	9
36	Estimation of fracture toughness and shear yield stress of orthotropic materials in cutting with rotating tools. Engineering Fracture Mechanics, 2017, 178, 433-444.	2.0	13

#	Article	IF	CITATIONS
37	Development of the in-field sensor for estimation of fracture toughness and shear strength by measuring cutting forces. International Wood Products Journal, 2017, 8, 34-38.	0.6	2
38	Hyperspectral imaging of weathered wood samples in transmission mode. International Wood Products Journal, 2017, 8, 9-13.	0.6	8
39	Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology. Materials, 2017, 10, 121.	1.3	16
40	ASSESSMENT AND MONITORING OF AESTHETIC APPEARANCE OF BUILDING BIOMATERIALS DURING THE SERVICE LIFE. WIT Transactions on Ecology and the Environment, 2017, , .	0.0	6
41	Selection of optimal conversion path for willow biomass assisted by near infrared spectroscopy. IForest, 2017, 10, 506-514.	0.5	7
42	Using various infrared techniques for assessing timber structures. International Journal of Computational Methods and Experimental Measurements, 2017, 5, 858-871.	0.1	1
43	Thermo-Vacuum Modification of Poplar Veneers and its Quality Control. BioResources, 2016, 11, .	0.5	13
44	Assessment of wood structural members degradation by means of infrared spectroscopy: an overview. Structural Control and Health Monitoring, 2016, 23, 396-408.	1.9	24
45	Densified wooden nails for new timber assemblies and restoration works: A pilot research. Construction and Building Materials, 2016, 102, 1084-1092.	3.2	16
46	Near Infrared Spectroscopy as a Tool for In-Field Determination of Log/Biomass Quality Index in Mountain Forests. Journal of Near Infrared Spectroscopy, 2016, 24, 587-594.	0.8	10
47	Chemical Changes to Woody Polymers Due to High-Temperature Thermal Treatment Assessed with near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 555-562.	0.8	8
48	Weathering Kinetics of Thin Wood Veneers Assessed with near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 549-553.	0.8	9
49	Near Infrared Hyperspectral Imaging in Transmission Mode: Assessing the Weathering of Thin Wood Samples. Journal of Near Infrared Spectroscopy, 2016, 24, 595-604.	0.8	14
50	Assessing Trees, Wood and Derived Products with near Infrared Spectroscopy: Hints and Tips. Journal of Near Infrared Spectroscopy, 2016, 24, 485-505.	0.8	69
51	Near infrared spectroscopic studies on coatings of 19th century wooden parquets from manor houses in South-Eastern Poland. Journal of Cultural Heritage, 2015, 16, 508-517.	1.5	12
52	Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 2015, 114, 44-48.	1.6	30
53	Estimation of physical and mechanical properties of timber members in service by means of infrared spectroscopy. Construction and Building Materials, 2015, 101, 1197-1205.	3.2	21
54	Characterization and Monitoring of Surface Weathering on Exposed Timber Structures With a Multi-Sensor Approach. International Journal of Architectural Heritage, 2015, 9, 674-688.	1.7	34

#	Article	IF	CITATIONS
55	Differences in wood properties of <i>Picea abies</i> L. Karst. in relation to site of provenance and population genetics. Holzforschung, 2015, 69, 385-397.	0.9	16
56	Multivariate analysis of multi-sensor data for assessment of timber structures: Principles and applications. Construction and Building Materials, 2015, 101, 1172-1180.	3.2	24
57	Near infrared assessment of biodegradability and mechanical properties of paper made of cellulose sulfate bleached coniferous pulp with addition of cationic starch and resinous adhesive. International Biodeterioration and Biodegradation, 2015, 97, 31-39.	1.9	6
58	Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydrate Polymers, 2015, 117, 710-721.	5.1	78
59	Spectral analysis of changes to pine and oak wood natural polymers after short-term waterlogging. Polymer Degradation and Stability, 2014, 99, 68-79.	2.7	27
60	Analysis and prediction of selected mechanical/dynamic properties of wood after short and long-term waterlogging. Construction and Building Materials, 2014, 68, 444-454.	3.2	29
61	The Effect of Wood Provenance and Density on Cutting Forces While Sawing Scots Pine (Pinus) Tj ETQq1 1 0.784	314 rgBT 0.5	/Qyerlock 1
62	The SWORFISH Project Approach for Modeling Wood Material Modifications in Timber Structures. Advanced Materials Research, 2013, 778, 418-423.	0.3	0
63	Monitoring of Wood Decay by near Infrared Spectroscopy. Advanced Materials Research, 2013, 778, 802-809.	0.3	16
64	Novel Nail-Like Wood Connectors. Advanced Materials Research, 2013, 778, 647-654.	0.3	3
65	Fourier Transform near Infrared Assessment of Biomass Composition of Shrub Willow Clones (<i>Salix</i> sp.) for Optimal Bio-Conversion Processing. Journal of Near Infrared Spectroscopy, 2011, 19, 309-318.	0.8	8
66	Fourier Transform near Infrared Analysis of Waste Paper with the Addition of Cereal Bran Biodegraded by <i>Ascomycetes</i> Fungi. Journal of Near Infrared Spectroscopy, 2011, 19, 369-379.	0.8	6
67	Relationship between near-infrared (NIR) spectra and the geographical provenance of timber. Wood Science and Technology, 2011, 45, 35-48.	1.4	68
68	Near infrared spectroscopy as a tool for archaeological wood characterization. Journal of Archaeological Science, 2010, 37, 2093-2101.	1.2	46
69	Non Destructive Characterization of Wooden Members Using near Infrared Spectroscopy. Advanced Materials Research, 0, 778, 328-334.	0.3	7
70	A Multi Sensor Approach for Prediction of Weathering Effects on Exposed Timber Structures. Advanced Materials Research, 0, 778, 794-801.	0.3	6
71	Near Infrared Spectroscopy as a Tool for Estimation of Mechanical Stresses in Wood. Advanced Materials Research, 0, 778, 448-453.	0.3	9
72	Weather degradation of thin wood samples assessed with NIR hypersepctral imaging in transmission mode. , 0, , .		1

#	Article	IF	CITATIONS
73	Leveraging Structural Health Monitoring Data Through Avatars to Extend the Service Life of Mass Timber Buildings. Frontiers in Built Environment, 0, 8, .	1.2	4