
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chinese Chemical Letters, 2023, 34, 107304.	4.8	31
2	High-energy aqueous supercapacitors enabled by N/O codoped carbon nanosheets and "water-in-salt― electrolyte. Chinese Chemical Letters, 2022, 33, 2681-2686.	4.8	50
3	<i>In situ</i> nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 611-621.	5.2	117
4	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	2.2	6
5	Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives. Journal of Organic Chemistry, 2022, 87, 2470-2479.	1.7	9
6	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	5.2	47
7	Synthesis, optical properties and self-organization of blue-emitting butterfly-shaped dithienobenzosiloles. Chinese Chemical Letters, 2022, 33, 4306-4312.	4.8	4
8	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
9	Regulating the spin state of single-atom doped covalent triazine frameworks for efficient nitrogen fixation. Journal of Colloid and Interface Science, 2022, 627, 931-941.	5.0	4
10	Thio-groups decorated covalent triazine frameworks for selective mercury removal. Journal of Hazardous Materials, 2021, 403, 123702.	6.5	60
11	Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters, 2021, 32, 1491-1496.	4.8	65
12	Boron "gluing―nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity. Journal of Materials Chemistry A, 2021, 9, 2714-2724.	5.2	67
13	Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy & Fuels, 2021, 35, 8443-8455.	2.5	115
14	Merging <i>N</i> â€Hydroxyphthalimide into Metalâ€Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation. Chemistry - A European Journal, 2021, 27, 9674-9685.	1.7	15
15	Adapting a Kinetics-Enhanced Carbon Nanostructure to Li/Na Hybrid Water-in-Salt Electrolyte for High-Energy Aqueous Supercapacitors. ACS Applied Energy Materials, 2021, 4, 5727-5737.	2.5	57
16	Metalâ^'organic frameworks as recyclable catalysts for efficient esterification to synthesize traditional plasticizers. Applied Catalysis A: General, 2021, 622, 118212.	2.2	7
17	A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon, 2021, 180, 135-145.	5.4	88
18	Synthesis, photophysical properties and optical stabilities of dimethylthio modified dibenzosiloles: High quantum yield emitters. Dyes and Pigments, 2021, 194, 109642.	2.0	8

#	Article	IF	CITATIONS
19	Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors. Materials Chemistry Frontiers, 2021, 5, 3061-3072.	3.2	69
20	Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€6table and Fast Proton oupled Charge Storage Kinetics. Advanced Materials, 2021, 33, e2104148.	11.1	174
21	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	6.6	81
22	Pseudoâ€Gated Adsorption with Negligible Volume Change Evoked by Halogenâ€Bond Interaction in the Nanospace of MOFs. Chemistry - A European Journal, 2020, 26, 2148-2153.	1.7	21
23	Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.	5.4	110
24	Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochimica Acta, 2020, 358, 136899.	2.6	90
25	Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS ₂ Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 50610-50618.	4.0	64
26	In situ selective ligand transformation from Si–H to Si–OH for synergistic assembly of hydrogen-bonded metal–organic frameworks. CrystEngComm, 2020, 22, 3921-3926.	1.3	5
27	Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2020, 393, 124666.	6.6	85
28	Recent advances in carbon-based supercapacitors. Materials Advances, 2020, 1, 945-966.	2.6	207
29	Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chinese Chemical Letters, 2020, 31, 1226-1230.	4.8	78
30	The fluorescent liquid crystal and spiro-silicon bridged compounds based on silafluorene core. Journal of Organometallic Chemistry, 2020, 912, 121178.	0.8	3
31	A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. Journal of Materials Chemistry A, 2020, 8, 3717-3725.	5.2	79
32	Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chemical Communications, 2019, 55, 11219-11222.	2.2	101
33	Effective Gas Separation Performance Enhancement Obtained by Constructing Polymorphous Core–Shell Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 30234-30239.	4.0	19
34	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	3.2	40
35	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	5.2	134
36	Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.	5.2	188

#	Article	IF	CITATIONS
37	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.	5.2	130
38	High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€V gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.	6.6	103
39	Template-Free, Self-Doped Approach to Porous Carbon Spheres with High N/O Contents for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7024-7034.	3.2	147
40	Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Materials Chemistry and Physics, 2018, 211, 234-241.	2.0	68
41	Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242.	6.6	160
42	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	2.6	105
43	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
44	Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon Nanosheets for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4998-5007.	2.4	63
45	A general strategy to synthesize high-level N-doped porous carbons <i>via</i> Schiff-base chemistry for supercapacitors. Journal of Materials Chemistry A, 2018, 6, 12334-12343.	5.2	130
46	Poly(ionic liquid)-derived, N, S-codoped ultramicroporous carbon nanoparticles for supercapacitors. Chemical Engineering Journal, 2017, 317, 651-659.	6.6	140
47	Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous and Mesoporous Materials, 2017, 253, 1-9.	2.2	91
48	Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates. Journal of the American Chemical Society, 2017, 139, 904-909.	6.6	25
49	Core–shell reduced graphene oxide/MnO @carbon hollow nanospheres for high performance supercapacitor electrodes. Chemical Engineering Journal, 2017, 313, 518-526.	6.6	137
50	Tuning the flexibility of interpenetrated frameworks by a small difference in the fluorene moiety. Dalton Transactions, 2017, 46, 15200-15203.	1.6	8
51	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie, 2017, 129, 15864-15868.	1.6	64
52	Controllable Modular Growth of Hierarchical MOFâ€onâ€MOF Architectures. Angewandte Chemie - International Edition, 2017, 56, 15658-15662.	7.2	246
53	Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chemical Engineering Journal, 2017, 308, 240-247.	6.6	163
54	Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 205, 132-141.	2.6	130

#	Article	IF	CITATIONS
55	A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks. Journal of the American Chemical Society, 2015, 137, 15825-15832.	6.6	37
56	Synthesis, Photophysical Properties, and Selfâ€Organization of Difurobenzosilole Derivatives. European Journal of Inorganic Chemistry, 2014, 2014, 1880-1885.	1.0	12
57	A Crystalline Porous Coordination Polymer Decorated with Nitroxyl Radicals Catalyzes Aerobic Oxidation of Alcohols. Journal of the American Chemical Society, 2014, 136, 7543-7546.	6.6	105
58	Synthesis and photophysical properties of highly emissive compounds containing a dibenzosilole core. Tetrahedron Letters, 2010, 51, 622-624.	0.7	34
59	New Types of Fluorescent Polymers with Bisâ€Siliconâ€Bridged <i>p</i> â€Terphenyl as a Building Unit. Macromolecular Chemistry and Physics, 2009, 210, 1097-1103.	1.1	8
60	Macromol. Chem. Phys. 13-14/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	1.1	0
61	Synthesis of Novel Ladder Bis-Silicon-Bridged <i>p</i> -Terphenyls. Organic Letters, 2007, 9, 4877-4879.	2.4	71
62	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal‒Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0