Peter Dorogokupets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Equations of state for CaSiO3 phases based on the Helmholtz free energy. Journal of Physics: Conference Series, 2021, 1787, 012005.	0.4	1
2	Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions. Minerals (Basel, Switzerland), 2021, 11, 322.	2.0	8
3	Density Patterns of the Upper Mantle Under Asia and the Arctic: Comparison of Thermodynamic Modelling and Geophysical Data. Pure and Applied Geophysics, 2020, 177, 4289-4307.	1.9	2
4	Spreadsheets to calculate <i>P–V–T</i> relations, thermodynamic and thermoelastic properties of silicates in the MgSiO ₃ –MgO system. High Pressure Research, 2018, 38, 193-211.	1.2	10
5	P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study. Physics of the Earth and Planetary Interiors, 2017, 265, 82-91.	1.9	48
6	Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K. Scientific Reports, 2017, 7, 418	63.3	66
7	Microsoft excel spreadsheets for calculation of P–V–T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Computers and Geosciences, 2016, 94, 162-169.	4.2	37
8	Thermoelastic properties of chromium oxide Cr2O3 (eskolaite) at high pressures and temperatures. Physics and Chemistry of Minerals, 2016, 43, 447-458.	0.8	11
9	THERMODYNAMIC PROPERTIES OF ROCK-FORMING OXIDES, α-Al2O3, Cr2O3, α-Fe2O3, AND Fe3O4 AT HIGH TEMPERATURES AND PRESSURES. Geodinamika I Tektonofizika, 2016, 7, 459-476.	0.7	11
10	The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russian Geology and Geophysics, 2015, 56, 172-189.	0.7	28
11	The evolution of the Siberian craton, petrogenesis and diamond potential of the mantle magmatic systems. Geodinamika I Tektonofizika, 2014, 5, 19-39.	0.7	0
12	P–V–T equation of state of siderite to 33 GPa and 1673 K. Physics of the Earth and Planetary Interiors, 2013, 224, 83-87.	1.9	16
13	Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russian Geology and Geophysics, 2013, 54, 181-199.	0.7	71
14	Thermal equation of state and thermodynamic properties of iron carbide Fe ₃ C to 31 GPa and 1473 K. Journal of Geophysical Research: Solid Earth, 2013, 118, 5274-5284.	3.4	44
15	Thermal equation of state to 33.5 CPa and 1673 K and thermodynamic properties of tungsten. Journal o Applied Physics, 2013, 113, .	f 2.5	24
16	P-V-T equations of state for iron carbides Fe3C and Fe7C3 and their relationships under the conditions of the Earth's mantle and core. Doklady Earth Sciences, 2013, 453, 1269-1273.	0.7	9
17	Thermal equation of state and thermodynamic properties of molybdenum at high pressures. Journal of Applied Physics, 2013, 113, .	2.5	42
18	Energy parameters of deep fluid systems. Doklady Earth Sciences, 2011, 437, 548-551.	0.7	3

#	Article	IF	CITATIONS
19	P–V–T equations of state of MgO and thermodynamics. Physics and Chemistry of Minerals, 2010, 37, 677-684.	0.8	30
20	Thermodynamics in high-temperature pressure scales on example of MgO. Journal of Physics: Conference Series, 2010, 215, 012198.	0.4	1
21	Water Corrodes Copper. Catalysis Letters, 2009, 132, 311-316.	2.6	42
22	<i>Ab initio</i> equation of state for the body-centered-cubic phase of iron at high pressure and temperature. Physical Review B, 2008, 78, .	3.2	34
23	Ruby, metals, andMgOas alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Physical Review B, 2007, 75, .	3.2	211
24	Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Pressure Research, 2007, 27, 431-446.	1.2	232
25	Equation of state of magnesite for the conditions of the Earth's lower mantle. Geochemistry International, 2007, 45, 561-568.	0.7	17
26	Quasihydrostatic Equation of State of Iron above 2ÂMbar. Physical Review Letters, 2006, 97, 215504.	7.8	350
27	Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale. Doklady Earth Sciences, 2006, 410, 1091-1095.	0.7	22
28	Intrinsic anharmonicity in equations of state and thermodynamics of solids. Journal of Physics Condensed Matter, 2004, 16, 1351-1360.	1.8	72
29	All-electron and pseudopotential study of MgO: Equation of state, anharmonicity, and stability. Physical Review B, 2003, 67, .	3.2	151
30	Thermodynamic functions at zero pressure and their relation to equations of state of minerals. American Mineralogist, 2000, 85, 329-337.	1.9	9
31	Equation of state for lambda transition in quartz. Journal of Geophysical Research, 1995, 100, 8489-8499.	3.3	20