Matthijs Verhage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599427/publications.pdf

Version: 2024-02-01

		36303	38395
156	10,851	51	95
papers	citations	h-index	g-index
168	168	168	14361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
2	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	8.1	518
3	A solution to dependency: using multilevel analysis to accommodate nested data. Nature Neuroscience, 2014, 17, 491-496.	14.8	470
4	Munc18-1 Promotes Large Dense-Core Vesicle Docking. Neuron, 2001, 31, 581-592.	8.1	329
5	Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron, 1991, 6, 517-524.	8.1	319
6	Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes. Science, 2010, 330, 502-505.	12.6	278
7	Doc2b Is a High-Affinity Ca ²⁺ Sensor for Spontaneous Neurotransmitter Release. Science, 2010, 327, 1614-1618.	12.6	271
8	Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes. Cell, 2009, 138, 935-946.	28.9	242
9	Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science, 2008, 321, 1507-1510.	12.6	241
10	Vesicle trafficking: pleasure and pain from SM genes. Trends in Cell Biology, 2003, 13, 177-186.	7.9	240
11	Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. Journal of Cell Biology, 2018, 217, 1129-1142.	5.2	227
12	Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity. Neuron, 2007, 54, 275-290.	8.1	196
13	Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends in Neurosciences, 2007, 30, 564-572.	8.6	177
14	Vesicle Docking in Regulated Exocytosis. Traffic, 2008, 9, 1414-1424.	2.7	175
15	Rabphilin Knock-Out Mice Reveal That Rabphilin Is Not Required for Rab3 Function in Regulating Neurotransmitter Release. Journal of Neuroscience, 1999, 19, 5834-5846.	3.6	162
16	Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO Journal, 2006, 25, 3725-3737.	7.8	156
17	DOC2 Proteins in Rat Brain: Complementary Distribution and Proposed Function as Vesicular Adapter Proteins in Early Stages of Secretion. Neuron, 1997, 18, 453-461.	8.1	155
18	Automated analysis of neuronal morphology, synapse number and synaptic recruitment. Journal of Neuroscience Methods, 2011, 195, 185-193.	2.5	155

#	Article	IF	CITATIONS
19	Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18332-18337.	7.1	148
20	Laminar and Columnar Development of Barrel Cortex Relies on Thalamocortical Neurotransmission. Neuron, 2013, 79, 970-986.	8.1	132
21	Phenotypic Complexity, Measurement Bias, and Poor Phenotypic Resolution Contribute to the Missing Heritability Problem in Genetic Association Studies. PLoS ONE, 2010, 5, e13929.	2.5	119
22	Munc18-1: Sequential Interactions with the Fusion Machinery Stimulate Vesicle Docking and Priming. Journal of Neuroscience, 2007, 27, 8676-8686.	3.6	110
23	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
24	Functional Gene Group Analysis Reveals a Role of Synaptic Heterotrimeric G Proteins in Cognitive Ability. American Journal of Human Genetics, 2010, 86, 113-125.	6.2	106
25	Docking of Secretory Vesicles Is Syntaxin Dependent. PLoS ONE, 2006, 1, e126.	2.5	102
26	The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends in Pharmacological Sciences, 2017, 38, 982-991.	8.7	101
27	Rab3A Is Involved in Transport of Synaptic Vesicles to the Active Zone in Mouse Brain Nerve Terminals. Molecular Biology of the Cell, 2001, 12, 3095-3102.	2.1	98
28	Somatodendritic Secretion in Oxytocin Neurons Is Upregulated during the Female Reproductive Cycle. Journal of Neuroscience, 2003, 23, 2726-2734.	3.6	95
29	Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain, 2018, 141, 1350-1374.	7.6	87
30	DOC2A and DOC2B are sensors for neuronal activity with unique calcium-dependent and kinetic properties. Journal of Neurochemistry, 2006, 97, 818-833.	3.9	86
31	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine, 2017, 9, 114.	8.2	86
32	Munc13 controls the location and efficiency of dense-core vesicle release in neurons. Journal of Cell Biology, 2012, 199, 883-891.	5.2	84
33	Presynaptic signal transduction pathways that modulate synaptic transmission. Current Opinion in Neurobiology, 2009, 19, 245-253.	4.2	83
34	Neurobeachin regulates neurotransmitter receptor trafficking to synapses. Journal of Cell Biology, 2013, 200, 61-80.	5.2	83
35	Munc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles. Nature Communications, 2017, 8, 15915.	12.8	83
36	Ca2+-Dependent Regulation of Presynaptic Stimulus-Secretion Coupling. Journal of Neurochemistry, 1989, 53, 1188-1194.	3.9	82

#	Article	IF	Citations
37	Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus, 2008, 18, 11-19.	1.9	78
38	SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron, 2020, 107, 22-37.	8.1	77
39	Sheltering Behavior and Locomotor Activity in 11 Genetically Diverse Common Inbred Mouse Strains Using Home-Cage Monitoring. PLoS ONE, 2014, 9, e108563.	2.5	76
40	Munc18-1 stabilizes syntaxin 1, but is not essential for syntaxin 1 targeting and SNARE complex formation. Journal of Neurochemistry, 2005, 93, 1393-1400.	3.9	74
41	A Single-Cell Model for Synaptic Transmission and Plasticity in Human iPSC-Derived Neurons. Cell Reports, 2019, 27, 2199-2211.e6.	6.4	74
42	Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. ELife, 2014, 3, e01715.	6.0	70
43	Synaptotagmin Interaction with SNAP-25 Governs Vesicle Docking, Priming, and Fusion Triggering. Journal of Neuroscience, 2013, 33, 14417-14430.	3.6	68
44	Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. European Journal of Neuroscience, 2000, 12, 385-390.	2.6	67
45	Vesicular Trafficking of Semaphorin 3A is Activity-Dependent and Differs Between Axons and Dendrites. Traffic, 2006, 7, 1060-1077.	2.7	67
46	Evaluation of the Ca2+Concentration in Purified Nerve Terminals: Relationship Between Ca2+Homeostasis and Synaptosomal Preparation. Journal of Neurochemistry, 1988, 51, 1667-1674.	3.9	64
47	Multiple Ca2+ sensors in secretion: teammates, competitors or autocrats?. Trends in Neurosciences, 2011, 34, 487-497.	8.6	64
48	Munc18-1 Regulates First-phase Insulin Release by Promoting Granule Docking to Multiple Syntaxin Isoforms. Journal of Biological Chemistry, 2012, 287, 25821-25833.	3.4	64
49	Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO Journal, 2012, 31, 2156-2168.	7.8	62
50	Trophic support delays but does not prevent cell-intrinsic degeneration of neurons deficient for munc18-1. European Journal of Neuroscience, 2004, 20, 623-634.	2.6	61
51	Matrix-Dependent Local Retention of Secretory Vesicle Cargo in Cortical Neurons. Journal of Neuroscience, 2009, 29, 23-37.	3.6	58
52	MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Human Molecular Genetics, 2018, 27, 1879-1891.	2.9	58
53	Pool size estimations for denseâ€core vesicles in mammalian <scp>CNS</scp> neurons. EMBO Journal, 2018, 37, .	7.8	53
54	The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators. Neuron, 2019, 104, 1065-1080.e12.	8.1	53

#	Article	IF	CITATIONS
55	Characterization of the Release of Cholecystokinin-8 from Isolated Nerve Terminals and Comparison with Exocytosis of Classical Transmitters. Journal of Neurochemistry, 1991, 56, 1394-1400.	3.9	51
56	Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. ELife, 2015, 4, e05531.	6.0	50
57	Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives. BMC Neuroscience, 2015, 16, 94.	1.9	49
58	Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5095-5100.	7.1	48
59	Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathologica, 2019, 138, 943-970.	7.7	48
60	Extension of Helix 12 in Munc18-1 Induces Vesicle Priming. Journal of Neuroscience, 2016, 36, 6881-6891.	3.6	47
61	Homozygous STXBP1 variant causes encephalopathy and gain-of-function in synaptic transmission. Brain, 2020, 143, 441-451.	7.6	46
62	Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. Journal of Neurochemistry, 2005, 92, 554-568.	3.9	45
63	Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nature Communications, 2018, 9, 3421.	12.8	45
64	Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP-25. Journal of Neuroscience, 2017, 37, 4525-4539.	3.6	43
65	Ca2+-induced Recruitment of the Secretory Vesicle Protein DOC2B to the Target Membrane. Journal of Biological Chemistry, 2004, 279, 23740-23747.	3.4	41
66	Regulated exocytosis: merging ideas on fusing membranes. Current Opinion in Cell Biology, 2007, 19, 402-408.	5.4	41
67	SNAP-25 gene family members differentially support secretory vesicle fusion. Journal of Cell Science, 2017, 130, 1877-1889.	2.0	40
68	Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner. Journal of Cell Biology, 2014, 204, 759-775.	5.2	39
69	A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice. Scientific Reports, 2017, 7, 42519.	3.3	39
70	Munc18 and Munc13 regulate early neurite outgrowth. Biology of the Cell, 2010, 102, 479-488.	2.0	38
71	Doc2b Is a Key Effector of Insulin Secretion and Skeletal Muscle Insulin Sensitivity. Diabetes, 2012, 61, 2424-2432.	0.6	38
72	Within-strain variation in behavior differs consistently between common inbred strains of mice. Mammalian Genome, 2015, 26, 348-354.	2.2	38

#	Article	IF	CITATIONS
73	Loss of mouse Stmn2 function causes motor neuropathy. Neuron, 2022, 110, 1671-1688.e6.	8.1	37
74	The Role of Rab3a in Secretory Vesicle Docking Requires Association/Dissociation of Guanidine Phosphates and Munc18-1. PLoS ONE, 2007, 2, e616.	2.5	36
75	Finding the right motivation: Genotype-dependent differences in effective reinforcements for spatial learning. Behavioural Brain Research, 2012, 226, 397-403.	2.2	35
76	A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion. PLoS Computational Biology, 2013, 9, e1003362.	3.2	35
77	Display of individuality in avoidance behavior and risk assessment of inbred mice. Frontiers in Behavioral Neuroscience, 2014, 8, 314.	2.0	35
78	The light spot test: Measuring anxiety in mice in an automated home-cage environment. Behavioural Brain Research, 2015, 294, 123-130.	2.2	35
79	The <scp>SNARE</scp> protein vti1a functions in denseâ€core vesicle biogenesis. EMBO Journal, 2014, 33, 1681-1697.	7.8	34
80	TRIM3 Regulates the Motility of the Kinesin Motor Protein KIF21B. PLoS ONE, 2013, 8, e75603.	2.5	33
81	Presynaptic inhibition upon <scp>CB</scp> 1 or <scp>mG</scp> lu2/3 receptor activation requires <scp>ERK</scp> / <scp>MAPK</scp> phosphorylation of Munc18â€1. EMBO Journal, 2016, 35, 1236-1250.	7.8	33
82	Gene-set analysis shows association between FMRP targets and autism spectrum disorder. European Journal of Human Genetics, 2017, 25, 863-868.	2.8	33
83	The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells. Journal of Neuroscience, 2014, 34, 10688-10700.	3.6	32
84	Interaction proteomics of canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with overlapping interactomes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 827-833.	2.3	32
85	Tyrosine phosphorylation of Munc18â€1 inhibits synaptic transmission by preventing <scp>SNARE</scp> Âassembly. EMBO Journal, 2018, 37, 300-320.	7.8	32
86	CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons. ELife, $2015, 4, .$	6.0	32
87	DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia, 2014, 57, 2173-2182.	6.3	30
88	Endogenous Noradrenaline and Dopamine in Nerve Terminals of the Hippocampus: Differences in Levels and Release Kinetics. Journal of Neurochemistry, 1992, 59, 881-887.	3.9	29
89	Measuring discrimination- and reversal learning in mouse models within 4 days and without prior food deprivation. Learning and Memory, 2016, 23, 660-667.	1.3	29
90	Rab3 Proteins Involved in Vesicle Biogenesis and Priming in Embryonic Mouse Chromaffin Cells. Traffic, 2010, 11, 1415-1428.	2.7	28

#	Article	IF	Citations
91	Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS ONE, 2017, 12, e0178533.	2.5	28
92	Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. ELife, 2017, 6, .	6.0	26
93	Synapse Associated Protein 102 (SAP102) Binds the C-Terminal Part of the Scaffolding Protein Neurobeachin. PLoS ONE, 2012, 7, e39420.	2.5	26
94	Bidirectional modulation of classical fear conditioning in mice by 5-HT1A receptor ligands with contrasting intrinsic activities. Neuropharmacology, 2009, 57, 567-576.	4.1	24
95	A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells. Journal of Neuroscience, 2015, 35, 14172-14182.	3.6	24
96	Denseâ€core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. Journal of Neurochemistry, 2018, 144, 241-254.	3.9	24
97	The Interaction of Munc18-1 Helix 11 and 12 with the Central Region of the VAMP2 SNARE Motif Is Essential for SNARE Templating and Synaptic Transmission. ENeuro, 2020, 7, ENEURO.0278-20.2020.	1.9	23
98	Ba2+ replaces Ca2+/calmodulin in the activation of protein phosphatases and in exocytosis of all major transmitters. European Journal of Pharmacology, 1995, 291, 387-398.	2.6	22
99	The role of Munc18â€1 in docking and exocytosis of peptide hormone vesicles in the anterior pituitary. Biology of the Cell, 2005, 97, 445-455.	2.0	22
100	Dendritic position is a major determinant of presynaptic strength. Journal of Cell Biology, 2012, 197, 327-337.	5.2	22
101	Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons <i>versus</i> synapses. Journal of Physiology, 2018, 596, 3759-3773.	2.9	22
102	Tetanus insensitive VAMP2 differentially restores synaptic and dense core vesicle fusion in tetanus neurotoxin treated neurons. Scientific Reports, 2020, 10, 10913.	3.3	22
103	Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates. Brain Structure and Function, 2015, 220, 1971-1982.	2.3	21
104	Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. Journal of Neuroscience, 2016, 36, 561-576.	3.6	21
105	CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons. Scientific Reports, 2017, 7, 10817.	3.3	19
106	CaMKII controls neuromodulation via neuropeptide gene expression and axonal targeting of neuropeptide vesicles. PLoS Biology, 2020, 18, e3000826.	5.6	18
107	Dynamin controls neuropeptide secretion by organizing dense-core vesicle fusion sites. Science Advances, 2021, 7, .	10.3	18
108	Tomosyn associates with secretory vesicles in neurons through its N- and C-terminal domains. PLoS ONE, 2017, 12, e0180912.	2.5	18

#	Article	IF	Citations
109	<scp>SALM</scp> 1 controls synapse development by promoting Fâ€actin/PIP2â€dependent Neurexin clustering. EMBO Journal, 2019, 38, e101289.	7.8	17
110	Unconventional secretion factor GRASP55 is increased by pharmacological unfolded protein response inducers in neurons. Scientific Reports, 2019, 9, 1567.	3.3	17
111	Vti Proteins: Beyond Endolysosomal Trafficking. Neuroscience, 2019, 420, 32-40.	2.3	17
112	Doc2b Synchronizes Secretion from Chromaffin Cells by Stimulating Fast and Inhibiting Sustained Release. Journal of Neuroscience, 2013, 33, 16459-16470.	3.6	15
113	FADS2 Genetic Variance in Combination with Fatty Acid Intake Might Alter Composition of the Fatty Acids in Brain. PLoS ONE, 2013, 8, e68000.	2.5	15
114	A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment. Behavioural Brain Research, 2015, 283, 53-60.	2.2	15
115	Perfusion of Immobilized Isolated Nerve Terminals as a Model for the Regulation of Transmitter Release: Release of Different, Endogenous Transmitters, Repeated Stimulation, and High Time Resolution. Journal of Neurochemistry, 1992, 58, 1313-1320.	3.9	14
116	STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG. Frontiers in Physiology, 2021, 12, 775172.	2.8	14
117	Different spatiotemporal expression of DOC2 genes in the developing rat brain argues for an additional, nonsynaptic role of DOC2B in early development. European Journal of Neuroscience, 2000, 12, 165-171.	2.6	13
118	Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality. PLoS ONE, 2011, 6, e28137.	2.5	13
119	Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons. PLoS ONE, 2015, 10, e0138950.	2.5	12
120	Chronic activation of the 5-HT2 receptor reduces 5-HT neurite density as studied in organotypic slice cultures. Brain Research, 2009, 1302, 1-9.	2.2	11
121	Automated quantification of cellular traffic in living cells. Journal of Neuroscience Methods, 2009, 178, 378-384.	2.5	11
122	Fbxo41 Promotes Disassembly of Neuronal Primary Cilia. Scientific Reports, 2019, 9, 8179.	3.3	11
123	Neuronâ€specific translational control shift ensures proteostatic resilience during <scp>ER</scp> stress. EMBO Journal, 2022, 41, .	7.8	11
124	Tomosyn Interacts with the SUMO E3 Ligase PIASγ. PLoS ONE, 2014, 9, e91697.	2.5	10
125	Functional Gene-Set Analysis Does Not Support a Major Role for Synaptic Function in Attention Deficit/Hyperactivity Disorder (ADHD). Genes, 2014, 5, 604-614.	2.4	10
126	<i>Munc18-1</i> Is Essential for Neuropeptide Secretion in Neurons. Journal of Neuroscience, 2021, 41, 5980-5993.	3.6	10

#	Article	IF	Citations
127	Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons. Stem Cell Reports, 2017, 8, 659-672.	4.8	9
128	Neuromodulator release in neurons requires two functionally redundant calcium sensors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2012137118.	7.1	9
129	Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Scientific Reports, 2019, 9, 11341.	3.3	8
130	Quantitative analysis of dense-core vesicle fusion in rodent CNS neurons. STAR Protocols, 2021, 2, 100325.	1.2	8
131	MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in \hat{l}^2 -sheet 10. Journal of Cell Science, 2019, 132, .	2.0	7
132	Loss of MUNC18â€1 leads to retrograde transport defects in neurons. Journal of Neurochemistry, 2021, 157, 450-466.	3.9	7
133	Post-tetanic potentiation lowers the energy barrier for synaptic vesicle fusion independently of Synaptotagmin-1. ELife, 2020, 9, .	6.0	7
134	Development of the mouse hypothalamo-neurohypophysial system in the munc18-1 null mutant that lacks regulated secretion. European Journal of Neuroscience, 2004, 19, 2944-2952.	2.6	6
135	Organelle docking: R-SNAREs are late. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19745-19746.	7.1	6
136	Molecular Machines in the Synapse: Overlapping Protein Sets Control Distinct Steps in Neurosecretion. PLoS Computational Biology, 2012, 8, e1002450.	3.2	6
137	Doc2 Proteins Are Not Required for the Increased Spontaneous Release Rate in Synaptotagmin-1-Deficient Neurons. Journal of Neuroscience, 2020, 40, 2606-2617.	3.6	6
138	Characterization of the release of Met-enkephalin from isolated nerve terminals: release kinetics and cation-dependence. Brain Research, 1992, 598, 294-301.	2.2	5
139	Automated analysis of secretory vesicle distribution at the ultrastructural level. Journal of Neuroscience Methods, 2008, 173, 83-90.	2.5	5
140	Genes Encoding Heterotrimeric G-proteins Are Associated with Gray Matter Volume Variations in the Medial Frontal Cortex. Cerebral Cortex, 2013, 23, 1025-1030.	2.9	5
141	Fatty Acids Add Grease to Exocytosis. Chemistry and Biology, 2005, 12, 511-512.	6.0	4
142	Neurodegeneration: New Road Leads Back to the Synapse. Neuron, 2012, 75, 935-938.	8.1	4
143	AHCODA-DB: a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data. BMC Bioinformatics, 2017, 18, 200.	2.6	4
144	Synaptobrevin, Sphingolipids, and Secretion: Lube â€~n' Go at the Synapse. Neuron, 2009, 62, 603-605.	8.1	3

#	Article	IF	CITATIONS
145	A Munc18-1 mutant mimicking phosphorylation by Down Syndrome-related kinase Dyrk1a supports normal synaptic transmission and promotes recovery after intense activity. Scientific Reports, 2020, 10, 3181.	3.3	3
146	Complex Genetics of Behavior: BXDs in the Automated Home-Cage. Methods in Molecular Biology, 2017, 1488, 519-530.	0.9	3
147	Doc2b Ca2+ binding site mutants enhance synaptic release at rest at the expense of sustained synaptic strength. Scientific Reports, 2019, 9, 14408.	3.3	2
148	Presynaptic plasticity: modulation of secretion, co-transmission and neurodegeneration. Parkinsonism and Related Disorders, 2007, 13, S250.	2.2	0
149	Crashpilot Underachieves due to Acetylation at the Nerve Terminal. Neuron, 2011, 72, 679-681.	8.1	0
150	Neuronâ€selective induction of granulovacuolar degeneration bodies: A lysosomal stress response to tau aggregation?. Alzheimer's and Dementia, 2020, 16, e039378.	0.8	0
151	Title is missing!. , 2020, 18, e3000826.		0
152	Title is missing!. , 2020, 18, e3000826.		0
153	Title is missing!. , 2020, 18, e3000826.		0
154	Title is missing!. , 2020, 18, e3000826.		0
155	Title is missing!. , 2020, 18, e3000826.		0
156	Title is missing!. , 2020, 18, e3000826.		0