Chaoyang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Progress in SERSâ€Based Antiâ€counterfeit Labels. Advanced Materials Interfaces, 2022, 9, .	1.9	14
2	Surface-enhanced Raman scattering-based molecular encoding with gold nanostars for anticounterfeiting applications. Materials Advances, 2021, 2, 5116-5123.	2.6	9
3	Group-Targeting SERS Screening of Total Benzodiazepines Based on Large-Size (111) Faceted Silver Nanosheets Decorated with Zinc Oxide Nanoparticles. Analytical Chemistry, 2021, 93, 3403-3410.	3.2	24
4	Greater SERS Activity of Ligand-Stabilized Gold Nanostars with Sharp Branches. Langmuir, 2020, 36, 3558-3564.	1.6	50
5	Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates. Biosensors and Bioelectronics, 2018, 119, 18-24.	5.3	26
6	Synthesis of Clean Cabbagelike (111) Faceted Silver Crystals for Efficient Surface-Enhanced Raman Scattering Sensing of Papaverine. Analytical Chemistry, 2018, 90, 9805-9812.	3.2	30
7	Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective. Analytical Chemistry, 2016, 88, 9381-9385.	3.2	49
8	Ligand Controlled Morphology Evolution of Active Intermediates for the Syntheses of Gold Nanostars. Langmuir, 2016, 32, 6674-6681.	1.6	15
9	Reliable Quantitative SERS Analysis Facilitated by Core–Shell Nanoparticles with Embedded Internal Standards. Angewandte Chemie - International Edition, 2015, 54, 7308-7312.	7.2	352
10	pH-Modulated Molecular Assemblies and Surface Properties of Metal-Organic Supercontainers at the Air-Water Interface. Angewandte Chemie, 2014, 126, 11145-11149.	1.6	7
11	Environment-dependent optical scattering of cuprous oxide microcrystals in liquid dispersions and Langmuir–Blodgett films. Journal of Materials Chemistry C, 2014, 2, 5910-5915.	2.7	1
12	pHâ€Modulated Molecular Assemblies and Surface Properties of Metal–Organic Supercontainers at the Air–Water Interface. Angewandte Chemie - International Edition, 2014, 53, 10965-10969.	7.2	29
13	Electrospun TiO ₂ Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2014, 6, 5759-5767.	4.0	93
14	Tailoring the SERS Enhancement Mechanisms of Silver Nanowire Langmuir–Blodgett Films via Galvanic Replacement Reaction. Journal of Physical Chemistry C, 2013, 117, 16187-16194.	1.5	23
15	Manipulating the Collective Surface Plasmon Resonances of Aligned Gold Nanorods in Electrospun Composite Nanofibers. Journal of Physical Chemistry C, 2013, 117, 21490-21497.	1.5	8
16	Structure evolution and SERS activation of cuprous oxide microcrystals via chemical etching. Journal of Materials Chemistry A, 2013, 1, 8790.	5.2	24
17	SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Advances, 2013, 3, 8998.	1.7	51
18	Surface-Enhanced Raman Scattering on Hierarchical Porous Cuprous Oxide Nanostructures in Nanoshell and Thin-Film Geometries, Journal of Physical Chemistry Letters, 2012, 3, 651-657	2.1	59

CHAOYANG JIANG

#	Article	IF	CITATIONS
19	Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir, 2012, 28, 14433-14440.	1.6	119
20	Robust Multilayer Thin Films Containing Cationic Thiol-Functionalized Gold Nanorods for Tunable Plasmonic Properties. Langmuir, 2012, 28, 923-930.	1.6	25
21	Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chemical Communications, 2012, 48, 7003.	2.2	106
22	Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning. Nanoscale, 2012, 4, 7369.	2.8	36
23	Understanding of morphology evolution in local aggregates and neighboring regions for organic photovoltaics. Physical Chemistry Chemical Physics, 2012, 14, 10168.	1.3	26
24	Gold–silver bimetallic porous nanowires for surface-enhanced Raman scattering. Chemical Communications, 2011, 47, 9606.	2.2	62
25	Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces. Journal of Physical Chemistry C, 2011, 115, 19028-19036.	1.5	115
26	Diameter-dependent coloration of silver nanowires. Nanotechnology, 2011, 22, 275712.	1.3	3
27	SERS spectroscopy and SERS imaging of Shewanella oneidensis using silver nanoparticles and nanowires. Chemical Communications, 2011, 47, 4129.	2.2	79
28	Preparation and optical properties of silver nanowires and silver-nanowire thin films. Journal of Colloid and Interface Science, 2011, 356, 151-158.	5.0	104
29	Instrument and materials development in Raman spectroscopy detection and imaging techniques for planetary explorations. Proceedings of SPIE, 2010, , .	0.8	Ο
30	CUBED: South Dakota 2010 Research Center For Dusel Experiments. Nuclear Physics A, 2010, 834, 816c-818c.	0.6	0
31	Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals. Journal of Materials Chemistry, 2010, 20, 8356.	6.7	40
32	Formation and Optical Properties of Compression-Induced Nanoscale Buckles on Silver Nanowires. ACS Nano, 2009, 3, 1795-1802.	7.3	32
33	Robust Fluorescent Response of Micropatterned Multilayered Films. Journal of Macromolecular Science - Physics, 2007, 46, 7-19.	0.4	13
34	Substrate- and Time-Dependent Photoluminescence of Quantum Dots Inside the Ultrathin Polymer LbL Film. Langmuir, 2007, 23, 4509-4515.	1.6	62
35	Robust, fluorescent, and nanoscale freestanding conjugated films. Soft Matter, 2007, 3, 432.	1.2	29
36	Buckling Behavior of Highly Oriented Silver Nanowires Encapsulated within Layer-by-Layer Films. Chemistry of Materials, 2007, 19, 2007-2015.	3.2	42

CHAOYANG JIANG

#	Article	IF	CITATIONS
37	Photoluminescence of a Freely Suspended Monolayer of Quantum Dots Encapsulated into Layer-by-Layer Films. Langmuir, 2007, 23, 10176-10183.	1.6	44
38	Complex Buckling Instability Patterns of Nanomembranes with Encapsulated Gold Nanoparticle Arrays. Nano Letters, 2006, 6, 2254-2259.	4.5	92
39	Langmuirâ~'Blodgett Monolayers of Gold Nanoparticles with Amphiphilic Shells from V-Shaped Binary Polymer Arms. Langmuir, 2006, 22, 7011-7015.	1.6	70
40	Thermo-Optical Arrays of Flexible Nanoscale Nanomembranes Freely Suspended over Microfabricated Cavities as IR Microimagers. Chemistry of Materials, 2006, 18, 2632-2634.	3.2	66
41	Self-recovery of stressed nanomembranes. Applied Physics Letters, 2005, 86, 121912.	1.5	25
42	Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes. Physical Review Letters, 2005, 95, 115503.	2.9	44
43	Encapsulating Nanoparticle Arrays into Layer-by-layer Multilayers by Capillary Transfer Lithography. Chemistry of Materials, 2005, 17, 5489-5497.	3.2	62
44	Carbon Nanotube Arrays Encapsulated into Freely Suspended Flexible Films. Chemistry of Materials, 2005, 17, 2490-2493.	3.2	44
45	Organized arrays of nanostructures in freely suspended nanomembranes. Soft Matter, 2005, 1, 334.	1.2	40
46	High-resolution Raman microscopy of curled carbon nanotubes. Applied Physics Letters, 2004, 85, 2598-2600.	1.5	39
47	Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Materials, 2004, 3, 721-728.	13.3	524
48	Electroluminescence from isolated CdSeâ^•ZnS quantum dots in multilayered light-emitting diodes. Journal of Applied Physics, 2004, 96, 3206-3210.	1.1	144
49	Collective and Individual Plasmon Resonances in Nanoparticle Films Obtained by Spin-Assisted Layer-by-Layer Assembly. Langmuir, 2004, 20, 882-890.	1.6	225
50	Raman Imaging and Spectroscopy of Heterogeneous Individual Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 8742-8745.	1.2	46
51	Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanotube bundles caused by plasmon band formation. Physical Review B, 2002, 66, .	1.1	105
52	Diameter-Dependent Combination Modes in Individual Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 823-826.	4.5	19
53	Combination of Confocal Raman Spectroscopy and Electron Microscopy on the Same Individual Bundles of Single-Walled Carbon Nanotubes. Nano Letters, 2002, 2, 1209-1213.	4.5	7
54	Monolayer Formation of Alkyl Chain-Containing Phosphoric Acid Amphiphiles at the Air/Water (pH 5.6) Interface: Influence of Temperature and Cations. Journal of Colloid and Interface Science, 2002, 246, 335-342.	5.0	10

CHAOYANG JIANG

#	Article	IF	CITATIONS
55	Raman investigation of single oxidized carbon nanotubes. Israel Journal of Chemistry, 2001, 41, 15-22.	1.0	8
56	Spectral behavior and pH dependence of N-hexadecyl-5-iminomethyl-8-hydroxyquinoline. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 1399-1407.	2.0	4
57	FT-IR studies of N-hexadecyl-5-iminomethyl-8-hydroxyquinoline Langmuir–Blodgett films. Materials Chemistry and Physics, 2000, 62, 236-240.	2.0	2
58	Characterization ofN-hexadecyl-5-iminomethyl-8-hydroxyquinoline and oriented crystallization of CuSO4·5H2O under its monolayer. Journal of Materials Chemistry, 1998, 8, 81-84.	6.7	3
59	Effect of different amphiphiles and their monolayers on the crystallization of CuSO4·5H2O â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4037-4042.	1.1	13
60	Oriented crystallization of CuSO4·5H2O under a monolayer of a novel amphiphilic ligand, 8-hexadecyloxyquinaldic acid. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3371-3375.	1.7	10
61	Synthesis and Amphiphilic and Spectral Characters of N-Alkyl-8-hydroxy-2-quinolinecarboxamides.	0.5	13