
Salud Borrego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscular Disorders, 2018, 28, 208-215.	0.6	273
2	Differential Contributions of Rare and Common, Coding and Noncoding Ret Mutations to Multifactorial Hirschsprung Disease Liability. American Journal of Human Genetics, 2010, 87, 60-74.	6.2	230
3	EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nature Genetics, 2008, 40, 1285-1287.	21.4	175
4	Specific polymorphisms in the RETproto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. Journal of Medical Genetics, 1999, 36, 771-774.	3.2	142
5	Contribution of rare and common variants determine complex diseases—Hirschsprung disease as a model. Developmental Biology, 2013, 382, 320-329.	2.0	119
6	Functional Loss of Semaphorin 3C and/or Semaphorin 3D and Their Epistatic Interaction with Ret Are Critical to Hirschsprung Disease Liability. American Journal of Human Genetics, 2015, 96, 581-596.	6.2	118
7	A Founding Locus within the RET Proto-Oncogene May Account for a Large Proportion of Apparently Sporadic Hirschsprung Disease and a Subset of Cases of Sporadic Medullary Thyroid Carcinoma. American Journal of Human Genetics, 2003, 72, 88-100.	6.2	100
8	267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation. Molecular Biology and Evolution, 2016, 33, 1205-1218.	8.9	78
9	Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biology, 2017, 18, 48.	8.8	72
10	Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Scientific Reports, 2017, 7, 41937.	3.3	71
11	Mutation spectrum of EYS in Spanish patients with autosomal recessive retinitis pigmentosa. Human Mutation, 2010, 31, E1772-E1800.	2.5	69
12	Molecular Analysis of theretandGDNFGenes in a Family with Multiple Endocrine Neoplasia Type 2A and Hirschsprung Disease1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3361-3364.	3.6	61
13	New roles of EDNRB and EDN3 in the pathogenesis of Hirschsprung disease. Genetics in Medicine, 2010, 12, 39-43.	2.4	59
14	Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. Scientific Reports, 2016, 6, 23910.	3.3	51
15	Hirschsprung's disease as a model of complex genetic etiology. Histology and Histopathology, 2013, 28, 1117-36.	0.7	48
16	Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. Journal of Molecular Medicine, 2010, 88, 507-514.	3.9	40
17	Copy-Number Variations in <i>EYS:</i> A Significant Event in the Appearance of arRP. , 2011, 52, 5625.		40
18	<i>Trans</i> -ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Human Molecular Genetics, 2016, 25, ddw333.	2.9	38

#	Article	IF	CITATIONS
19	Association Study of 69 Genes in the Ret Pathway Identifies Low-penetrance Loci in Sporadic Medullary Thyroid Carcinoma. Cancer Research, 2007, 67, 9561-9567.	0.9	36
20	Mutation Screening of Multiple Genes in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa by Targeted Resequencing. PLoS ONE, 2011, 6, e27894.	2.5	36
21	Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients. PLoS ONE, 2012, 7, e36524.	2.5	36
22	Novel mutations at RET ligand genes preventing receptor activation are associated to Hirschsprung's disease. Journal of Molecular Medicine, 2011, 89, 471-480.	3.9	35
23	Mutational Spectrum of Semaphorin 3A and Semaphorin 3D Genes in Spanish Hirschsprung patients. PLoS ONE, 2013, 8, e54800.	2.5	34
24	Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in <i>RET</i> M918T Tumors. Clinical Cancer Research, 2017, 23, 1334-1345.	7.0	34
25	CSVS, a crowdsourcing database of the Spanish population genetic variability. Nucleic Acids Research, 2021, 49, D1130-D1137.	14.5	34
26	An Impairment of Long Distance SOX10 Regulatory Elements Underlies Isolated Hirschsprung Disease. Human Mutation, 2014, 35, 303-307.	2.5	33
27	Contributions of PHOX2B in the Pathogenesis of Hirschsprung Disease. PLoS ONE, 2013, 8, e54043.	2.5	30
28	The NER-related gene <i>GTF2H5</i> predicts survival in high-grade serous ovarian cancer patients. Journal of Gynecologic Oncology, 2016, 27, e7.	2.2	30
29	A complex additive model of inheritance for Hirschsprung disease is supported by both RET mutations and predisposing RET haplotypes. Genetics in Medicine, 2006, 8, 704-710.	2.4	29
30	Involvement of DNMT3B in the pathogenesis of Hirschsprung disease and its possible role as a regulator of neurogenesis in the human enteric nervous system. Genetics in Medicine, 2014, 16, 703-710.	2.4	29
31	Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease. Scientific Reports, 2015, 5, 16473.	3.3	29
32	A map of human microRNA variation uncovers unexpectedly high levels of variability. Genome Medicine, 2012, 4, 62.	8.2	28
33	Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes, 2019, 10, 913.	2.4	28
34	Analysis of <i>RET</i> Polymorphisms and Haplotypes in the Context of Sporadic Medullary Thyroid Carcinoma. Thyroid, 2006, 16, 411-417.	4.5	25
35	NTF-3, a gene involved in the enteric nervous system development, as a candidate gene for Hirschsprung disease. Journal of Pediatric Surgery, 2008, 43, 1308-1311.	1.6	24
36	What is new about the genetic background of Hirschsprung disease?. Clinical Genetics, 2020, 97, 114-124.	2.0	24

#	Article	IF	CITATIONS
37	Epigenetic Mechanisms in Hirschsprung Disease. International Journal of Molecular Sciences, 2019, 20, 3123.	4.1	23
38	Unmasking Retinitis Pigmentosa complex cases by a whole genome sequencing algorithm based on open-access tools: hidden recessive inheritance and potential oligogenic variants. Journal of Translational Medicine, 2020, 18, 73.	4.4	23
39	Expression of PROKR1 and PROKR2 in Human Enteric Neural Precursor Cells and Identification of Sequence Variants Suggest a Role in HSCR. PLoS ONE, 2011, 6, e23475.	2.5	22
40	Reâ€evaluation casts doubt on the pathogenicity of homozygous <i>USH2A</i> p.C759F. American Journal of Medical Genetics, Part A, 2015, 167, 1597-1600.	1.2	21
41	Novel association of severe neonatal encephalopathy and Hirschsprung disease in a male with a duplication at the Xq28 region. BMC Medical Genetics, 2010, 11, 137.	2.1	20
42	Experience of Preimplantation Genetic Diagnosis with HLA Matching at the University Hospital Virgen del RocÃo in Spain: Technical and Clinical Overview. BioMed Research International, 2014, 2014, 1-8.	1.9	18
43	Novel RP1 mutations and a recurrent BBS1variant explain the co-existence of two distinct retinal phenotypes in the same pedigree. BMC Genetics, 2014, 15, 143.	2.7	18
44	Waardenburg syndrome type 4: Report of two new cases caused by <i>SOX10</i> mutations in Spain. American Journal of Medical Genetics, Part A, 2014, 164, 542-547.	1.2	18
45	Overexpression of DNMT3b target genes during Enteric Nervous System development contribute to the onset of Hirschsprung disease. Scientific Reports, 2017, 7, 6221.	3.3	18
46	Pathways systematically associated to Hirschsprung's disease. Orphanet Journal of Rare Diseases, 2013, 8, 187.	2.7	17
47	Deletion at 6q24.2–26 predicts longer survival of highâ€grade serous epithelial ovarian cancer patients. Molecular Oncology, 2015, 9, 422-436.	4.6	17
48	G534E Variant in <i>HABP2</i> and Nonmedullary Thyroid Cancer. Thyroid, 2016, 26, 987-988.	4.5	17
49	Searching the second hit in patients with inherited retinal dystrophies and monoallelic variants in ABCA4, USH2A and CEP290 by whole-gene targeted sequencing. Scientific Reports, 2018, 8, 13312.	3.3	17
50	Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa. Molecular Vision, 2013, 19, 2187-95.	1.1	17
51	Prevalence of 2314delG mutation in Spanish patients with Usher syndrome type II (USH2). Ophthalmic Genetics, 2000, 21, 123-128.	1.2	16
52	Exome Sequencing Reveals Novel and Recurrent Mutations with Clinical Significance in Inherited Retinal Dystrophies. PLoS ONE, 2014, 9, e116176.	2.5	16
53	Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Medical Genomics, 2015, 8, 83.	1.5	15
54	Evaluation of the role of RET polymorphisms/haplotypes as modifier loci for MEN 2, and analysis of the correlation with the type of RET mutation in a series of Spanish patients. International Journal of Molecular Medicine, 2006, 17, 575-81.	4.0	15

#	Article	IF	CITATIONS
55	Comprehensive analysis of RET common and rare variants in a series of Spanish Hirschsprung patients confirms a synergistic effect of both kinds of events. BMC Medical Genetics, 2011, 12, 138.	2.1	14
56	Association of Xâ€linked hydrocephalus and Hirschsprung disease: Report of a new patient with a mutation in the <i>L1CAM</i> gene. American Journal of Medical Genetics, Part A, 2012, 158A, 816-820.	1.2	14
57	Next-generation-based targeted sequencing as an efficient tool for the study of the genetic background in Hirschsprung patients. BMC Medical Genetics, 2015, 16, 89.	2.1	14
58	Deciphering intrafamilial phenotypic variability by exome sequencing in a Bardet–Biedl family. Molecular Genetics & Genomic Medicine, 2014, 2, 124-133.	1.2	13
59	One-step multiplex polymerase chain reaction for preimplantation genetic diagnosis of Huntington disease. Fertility and Sterility, 2010, 93, 2411-2412.	1.0	12
60	Experience of Preimplantation Genetic Diagnosis for Hemophilia at the University Hospital Virgen Del RocÃo in Spain: Technical and Clinical Overview. BioMed Research International, 2015, 2015, 1-8.	1.9	10
61	Identification of New Potential LncRNA Biomarkers in Hirschsprung Disease. International Journal of Molecular Sciences, 2020, 21, 5534.	4.1	10
62	RMRP, RMST, FTX and IPW: novel potential long non-coding RNAs in medullary thyroid cancer. Orphanet Journal of Rare Diseases, 2021, 16, 4.	2.7	10
63	TheRETC620S mutation causes multiple endocrine neoplasia type 2A (MEN2A) but not Hirschsprung disease (HSCR) in a family cosegregating both phenotypes. Human Mutation, 2003, 22, 412-415.	2.5	9
64	Novel One-Step Multiplex PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of -Thalassemia. BioMed Research International, 2013, 2013, 1-9.	1.9	9
65	Male and female differential reproductive rate could explain parental transmission asymmetry of mutation origin in Hirschsprung disease. European Journal of Human Genetics, 2012, 20, 917-920.	2.8	8
66	Somatic and germâ€line mosaicism of deletion 15q11.2–q13 in a mother of dyzigotic twins with Angelman syndrome. American Journal of Medical Genetics, Part A, 2014, 164, 370-376.	1.2	8
67	Interstitial 10p deletion derived from a maternal ins(16;10)(q22;p13p15.2): Report of the first familial case of 10p monosomy affecting to two familial members of different generations. American Journal of Medical Genetics, Part A, 2016, 170, 1268-1273.	1.2	8
68	Identification of different mechanisms leading to PAX6 down-regulation as potential events contributing to the onset of Hirschsprung disease. Scientific Reports, 2016, 6, 21160.	3.3	8
69	Expanding the clinical and mutational spectrum of germline ABL1 mutations-associated syndrome. Medicine (United States), 2019, 98, e14782.	1.0	8
70	A novel study of Copy Number Variations in Hirschsprung disease using the Multiple Ligation-dependent Probe Amplification (MLPA) technique. BMC Medical Genetics, 2009, 10, 119.	2.1	7
71	Four new loci associations discovered by pathway-based and network analyses of the genome-wide variability profile of Hirschsprung's disease. Orphanet Journal of Rare Diseases, 2012, 7, 103.	2.7	7
72	A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genetics, 2020, 16, e1009106.	3.5	7

#	Article	IF	CITATIONS
73	A comprehensive WGS-based pipeline for the identification of new candidate genes in inherited retinal dystrophies. Npj Genomic Medicine, 2022, 7, 17.	3.8	7
74	Novel MLPA procedure using self-designed probes allows comprehensive analysis for CNVs of the genes involved in Hirschsprung disease. BMC Medical Genetics, 2010, 11, 71.	2.1	6
75	<i>Dnmt3b</i> knock-down in enteric precursors reveals a possible mechanism by which this <i>de novo</i> methyltransferase is involved in the enteric nervous system development and the onset of Hirschsprung disease. Oncotarget, 2017, 8, 106443-106453.	1.8	6
76	A Multi-Strategy Sequencing Workflow in Inherited Retinal Dystrophies: Routine Diagnosis, Addressing Unsolved Cases and Candidate Genes Identification. International Journal of Molecular Sciences, 2020, 21, 9355.	4.1	5
77	Cys 634 mutations in the RET proto-oncogene in Spanish families affected by MEN 2A. Human Mutation, 1998, 11, S72-S73.	2.5	4
78	Clinical and Technical Overview of Preimplantation Genetic Diagnosis for Fragile X Syndrome: Experience at the University Hospital Virgen del Rocio in Spain. BioMed Research International, 2015, 2015, 1-6.	1.9	4
79	Preimplantation Genetic Diagnosis for Myotonic Dystrophy Type 1 and Analysis of the Effect of the Disease on the Reproductive Outcome of the Affected Female Patients. BioMed Research International, 2017, 2017, 1-7.	1.9	4
80	ChIP-Seq-Based Approach in Mouse Enteric Precursor Cells Reveals New Potential Genes with a Role in Enteric Nervous System Development and Hirschsprung Disease. International Journal of Molecular Sciences, 2020, 21, 9061.	4.1	4
81	Genome-wide analysis of DNA methylation in Hirschsprung enteric precursor cells: unraveling the epigenetic landscape of enteric nervous system development. Clinical Epigenetics, 2021, 13, 51.	4.1	4
82	Coâ€segregation of a homozygous <i><scp>SMN</scp>1</i> deletion and a heterozygous <i><scp>PMP</scp>22</i> duplication in a patient. Clinical Case Reports (discontinued), 2016, 4, 879-884.	0.5	3
83	<i>ESR2</i> Gene and Medullary Thyroid Carcinoma. Thyroid, 2017, 27, 1456-1457.	4.5	3
84	Ultrasound, Echocardiography, MRI, and Genetic Analysis of a Fetus with Congenital Diaphragmatic Hernia and Partial 11q Trisomy. Case Reports in Obstetrics and Gynecology, 2017, 2017, 1-4.	0.3	3
85	Atypical Association of Angelman Syndrome and Klinefelter Syndrome in a Boy with 47,XXY Karyotype and Deletion 15q11.2-q13. Case Reports in Genetics, 2014, 2014, 1-4.	0.2	2
86	A Scoring System to Predict the Severity of Hirschsprung Disease at Diagnosis and Its Correlation With Molecular Genetics. Pediatric and Developmental Pathology, 2017, 20, 28-37.	1.0	2