
Mithun Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3599226/publications.pdf Version: 2024-02-01

MITHUN CHOWDHURY

#	Article	IF	CITATIONS
1	Aging of Thin Polymer Films Cast from a Near-Theta Solvent. Physical Review Letters, 2010, 105, 227801.	7.8	74
2	Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices. ACS Applied Materials & Interfaces, 2016, 8, 9247-9253.	8.0	56
3	Segmental Relaxations have Macroscopic Consequences in Glassy Polymer Films. Physical Review Letters, 2012, 109, 136102.	7.8	51
4	Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material. ACS Applied Materials & Interfaces, 2017, 9, 14945-14952.	8.0	36
5	Intrinsic Stresses in Thin Glassy Polymer Films Revealed by Crack Formation. Macromolecules, 2016, 49, 9060-9067.	4.8	24
6	Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer. Physical Chemistry Chemical Physics, 2017, 19, 12441-12451.	2.8	23
7	21st Century Advances in Fluorescence Techniques to Characterize Glassâ€Forming Polymers at the Nanoscale. Macromolecular Chemistry and Physics, 2018, 219, 1700368.	2.2	22
8	Spatially Distributed Rheological Properties in Confined Polymers by Noncontact Shear. Journal of Physical Chemistry Letters, 2017, 8, 1229-1234.	4.6	21
9	Relaxing nonequilibrated polymers in thin films at temperatures slightly above the glass transition. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 515-523.	2.1	19
10	Discrete mobility on the surface of glasses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4854-4856.	7.1	17
11	Stratification and two glass-like thermal transitions in aged polymer films. Physical Chemistry Chemical Physics, 2017, 19, 29263-29270.	2.8	17
12	Engineered exciton diffusion length enhances device efficiency in small molecule photovoltaics. Journal of Materials Chemistry A, 2018, 6, 9445-9450.	10.3	17
13	Swelling with a Near- \hat{l}^{\sim} Solvent as a Means to Modify the Properties of Polymer Thin Films. Macromolecules, 2012, 45, 6196-6200.	4.8	14
14	Exploiting physical vapor deposition for morphological control in semiâ€crystalline polymer films. Polymer Crystallization, 2018, 1, e10021.	0.8	13
15	Cationic surfactant-directed structural control of NaCl crystals from evaporating sessile droplets. Soft Matter, 2021, 18, 62-79.	2.7	12
16	Tuning Morphology and Melting Temperature in Polyethylene Films by MAPLE. Macromolecules, 2018, 51, 512-519.	4.8	11
17	Tunable Properties of MAPLE-Deposited Thin Films in the Presence of Suppressed Segmental Dynamics. ACS Macro Letters, 2019, 8, 1115-1121.	4.8	9
18	Surface Chemical Functionalization to Achieve Extreme Levels of Molecular Confinement in Hybrid Nanocomposites. Advanced Functional Materials, 2019, 29, 1903132.	14.9	9

#	Article	IF	CITATIONS
19	In situ measurement of bulk modulus and yield response of glassy thin films via confined layer compression. Journal of Materials Research, 2020, 35, 644-653.	2.6	7
20	Decoupling of Glassy Dynamics from Viscosity in Thin Supported Poly(<i>n</i> -butyl methacrylate) Films. ACS Polymers Au, 2022, 2, 333-340.	4.1	6
21	Scaling mechanical instabilities in drying micellar droplets. Soft Matter, 0, , .	2.7	0