
Giuliana Faggio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving graphene/4H-SiC/graphene MSM UV photodetector sensitivity using interdigitated electrodes formalism and embedded gold plasmonic nanoparticles. Optics and Laser Technology, 2022, 148, 107683.	2.2	3
2	Competitive Detection of Volatile Compounds from Food Degradation by a Zinc Oxide Sensor. Applied Sciences (Switzerland), 2022, 12, 2261.	1.3	5
3	Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550Ânm. Scientific Reports, 2022, 12, 4809.	1.6	5
4	Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor. Applied Sciences (Switzerland), 2022, 12, 367.	1.3	2
5	Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy. Applied Surface Science, 2022, 599, 154035.	3.1	4
6	Fabrication of 3D monolithic graphene foam/polycaprolactone porous nanocomposites for bioapplications. Journal of Materials Science, 2021, 56, 5581-5594.	1.7	7
7	Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2005300.	7.8	15
8	Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 7324-7333.	4.0	3
9	Neuronal Networks: Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity (Adv. Funct. Mater. 11/2021). Advanced Functional Materials, 2021, 31, 2170075.	7.8	0
10	A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. Materials Science and Engineering C, 2021, 126, 112110.	3.8	20
11	Radioactivity, Metals Pollution and Mineralogy Assessment of a Beach Stretch from the Ionian Coast of Calabria (Southern Italy). International Journal of Environmental Research and Public Health, 2021, 18, 12147.	1.2	10
12	Recent Advancements on the CVD of Graphene on Copper from Ethanol Vapor. Journal of Carbon Research, 2020, 6, 14.	1.4	11
13	Compositional and Mineralogical Analysis of Marine Sediments from Calabrian Selected Areas, Southern Italy. International Journal of Environmental Research, 2019, 13, 571-580.	1.1	6
14	Radiological assessment, mineralogy and geochemistry of the heavy-mineral placers from the Calabrian coast (South Italy). Journal of Instrumentation, 2019, 14, P05015-P05015.	0.5	6
15	Thermo-optic Effect of 4H-silicon Carbide at Fiber-optic Communication Wavelengths. , 2019, , .		0
16	The Role of Grapheneâ€Based Derivative as Interfacial Layer in Graphene/nâ€Si Schottky Barrier Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800555.	0.8	21
17	Synthesis, crystal structure, vibrational and optical properties of a new Bi(III) halide complex: (C9H13N2O2)2Bi2Cl8. Journal of Molecular Structure, 2019, 1183, 52-59.	1.8	10
18	Carbon Dots Dispersed on Graphene/SiO 2 /Si: A Morphological Study. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800559.	0.8	6

#	Article	IF	CITATIONS
19	Radioactivity, radiological risk and metal pollution assessment in marine sediments from Calabrian selected areas, southern Italy. European Physical Journal Plus, 2018, 133, 1.	1.2	13
20	Electrochemical synthesis of self-organized TiO ₂ crystalline nanotubes without annealing. Nanotechnology, 2018, 29, 095604.	1.3	16
21	Ethanol-CVD Growth of Sub-mm Single-Crystal Graphene on Flat Cu Surfaces. Journal of Physical Chemistry C, 2018, 122, 28830-28838.	1.5	23
22	Chemical Vapor Deposited Graphene-Based Derivative As High-Performance Hole Transport Material for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 23844-23853.	4.0	29
23	Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein Journal of Nanotechnology, 2015, 6, 2028-2038.	1.5	63
24	Surface Chemistry and Thermal Stability in Air of Carbon Nanotubes Functionalised via a Novel Eco-Friendly Approach to HNO ₃ Vapor Oxidation. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 83-92.	1.0	2
25	Cross interference effects between water and NH <inf>3</inf> on a sensor based on graphene/silicon Schottky diode. , 2015, , .		4
26	Highly Versatile and Efficient Process for CNT Oxidation in Vapor Phase by Means of Mg(NO3)2‒HNO3‒H2O Ternary Mixture. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 1-5.	1.0	7
27	Graphene-Si Schottky diode in environmental conditions at low NH <inf>3</inf> ppm level. , 2014, , .		1
28	Graphene-based Schottky Device Detecting NH3 at ppm level in Environmental Conditions. Procedia Engineering, 2014, 87, 232-235.	1.2	7
29	Fast growth of polycrystalline graphene by chemical vapor deposition of ethanol on copper. , 2014, , .		3
30	A safer and flexible method for the oxygen functionalization of carbon nanotubes by nitric acid vapors. Applied Surface Science, 2014, 303, 446-455.	3.1	17
31	Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diamond and Related Materials, 2014, 41, 73-78.	1.8	29
32	Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films, 2014, 571, 139-144.	0.8	38
33	Micro-Raman Analysis of Three-Dimensional Macroporous Sponge-Like Network of Carbon Nanotubes under Tension. Journal of Physical Chemistry C, 2014, 118, 13912-13919.	1.5	2
34	High-Temperature Growth of Graphene Films on Copper Foils by Ethanol Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21569-21576.	1.5	68
35	Microstructure of anatase-based hybrid nanocomposites. Journal Physics D: Applied Physics, 2013, 46, 125303.	1.3	4
36	Correlation between carbon nanotube microstructure and their catalytic efficiency towards the p-coumaric acid degradation. Current Applied Physics, 2013, 13, 748-752.	1.1	10

#	Article	IF	CITATIONS
37	On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices. Sensors and Actuators B: Chemical, 2013, 178, 473-484.	4.0	46
38	Raman scattering in boron-doped single-crystal diamond used to fabricate Schottky diode detectors. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2476-2481.	1.1	17
39	Effect of Fe load on the synthesis of C nanotubes by isobutane decomposition over Na-exchanged montmorillonite-clay catalysts. Diamond and Related Materials, 2012, 23, 54-60.	1.8	4
40	Microâ€Raman and photoluminescence analysis of composite vanadium oxide/polyâ€vinyl acetate fibres synthesised by electroâ€spinning. Journal of Raman Spectroscopy, 2012, 43, 761-768.	1.2	53
41	Effect of sulphuric–nitric acid mixture composition on surface chemistry and structural evolution of liquidâ€phase oxidised carbon nanotubes. Journal of Raman Spectroscopy, 2012, 43, 1432-1442.	1.2	52
42	Hydrogen sensing characteristics of Pt/TiO 2 /MWCNTs composites. International Journal of Hydrogen Energy, 2012, 37, 1842-1851.	3.8	68
43	Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Applied Catalysis B: Environmental, 2012, 121-122, 40-49.	10.8	63
44	Synthesis and analysis of multi-walled carbon nanotubes/oxides hybrid materials for polymer composite applications. Diamond and Related Materials, 2011, 20, 532-537.	1.8	5
45	Polylactide and carbon nanotubes/smectite-clay nanocomposites: Preparation, characterization, sorptive and electrical properties. Applied Clay Science, 2011, 53, 188-194.	2.6	48
46	Optical trapping of porous silicon nanoparticles. Nanotechnology, 2011, 22, 505704.	1.3	23
47	On the CVD Growth of C Nanotubes over Fe-Loaded Montmorillonite Catalysts. Nanomaterials and Nanotechnology, 2011, 1, 15.	1.2	4
48	Evaluation of crystalline perfection degree of multiâ€walled carbon nanotubes: correlations between thermal kinetic analysis and microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 593-602.	1.2	80
49	Room Temperature Hydrogen Sensor Based on Pt/TiO2/MWCNT Composites. Lecture Notes in Electrical Engineering, 2011, , 87-91.	0.3	0
50	Scaling Laws for Multi-Walled Carbon Nanotube Growth by Catalyzed Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2010, 10, 1286-1295.	0.9	2
51	Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multi-walled carbon nanotubes. Journal of Materials Science, 2010, 45, 783-792.	1.7	16
52	Preparation of nanotubes-clay hybrid systems by iron-catalyzed isobutane decomposition. Diamond and Related Materials, 2010, 19, 599-603.	1.8	9
53	Micro-Raman analysis of titanium oxide/carbon nanotubes-based nanocomposites for hydrogen sensing applications. Journal of Solid State Chemistry, 2010, 183, 2451-2455.	1.4	44
54	Micro-Raman investigation of vanadium-oxide coated tubular carbon nanofibers for gas-sensing applications. Diamond and Related Materials, 2010, 19, 590-594.	1.8	29

#	Article	IF	CITATIONS
55	Single-crystal diamond MIS diode for deep UV detection. Radiation Effects and Defects in Solids, 2010, 165, 737-745.	0.4	5
56	Optical and structural properties of silicon carbon nitride thin films deposited by reactive pulsed laser ablation. Radiation Effects and Defects in Solids, 2010, 165, 754-759.	0.4	3
57	Exciton condensation in homoepitaxial chemical vapor deposition diamond. Journal of Applied Physics, 2009, 106, 053528.	1.1	10
58	Influence of gas-mixture composition on yield, purity and morphology of carbon nanotubes grown by catalytic isobutane-decomposition. Diamond and Related Materials, 2009, 18, 360-363.	1.8	6
59	Raman and photoluminescence study of hot filament CVD diamond films grown on WC–Co substrates. Journal of Raman Spectroscopy, 2008, 39, 157-163.	1.2	6
60	Spectroscopic investigation of homoepitaxial CVD diamond for detection applications. Diamond and Related Materials, 2008, 17, 372-376.	1.8	2
61	Iron-catalyst performances in carbon nanotube growth by chemical vapour deposition. EPJ Applied Physics, 2008, 44, 171-180.	0.3	4
62	Single crystal diamond detectors grown by chemical vapor deposition. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 570, 299-302.	0.7	12
63	Analysis of trapping–detrapping defects in high quality single crystal diamond films grown by Chemical Vapor Deposition. Diamond and Related Materials, 2006, 15, 1878-1881.	1.8	3
64	Characterization of homoepitaxial CVD diamond grown at moderate microwave power. Diamond and Related Materials, 2006, 15, 517-521.	1.8	3
65	Pulse height defect in pCVD and scCVD diamond based detectors. Diamond and Related Materials, 2006, 15, 1986-1989.	1.8	4
66	Homoepitaxial CVD diamond: Raman and time-resolved PL characterization. Diamond and Related Materials, 2006, 15, 1976-1979.	1.8	10
67	Characterization of homoepitaxial diamond for ionizing radiation detectors. Journal of Non-Crystalline Solids, 2006, 352, 2575-2579.	1.5	3
68	Optical Characterisation of High-Quality Homoepitaxial Diamond. Topics in Applied Physics, 2006, , 345-358.	0.4	2
69	Diamond-based photoconductors for deep UV detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 567, 188-191.	0.7	12
70	Raman and photoluminescence analysis of CVD diamond films: influence of Si-related luminescence centre on the film detection properties. Diamond and Related Materials, 2004, 13, 923-928.	1.8	18
71	Photoconductive properties of single-crystal CVD diamond. Physica Status Solidi A, 2003, 199, 113-118.	1.7	12
72	Spectral response of large area CVD diamond photoconductors for space applications in the vacuum UV. Diamond and Related Materials, 2003, 12, 1819-1824.	1.8	9

#	Article	IF	CITATIONS
73	A joint macro-/micro- Raman investigation of the diamond lineshape in CVD films: the influence of texturing and stress. Diamond and Related Materials, 2001, 10, 1535-1543.	1.8	13
74	High quality CVD diamond for detection applications: structural characterization. Diamond and Related Materials, 2001, 10, 1788-1793.	1.8	17
75	High quality CVD diamond: a Raman scattering and photoluminescence study. European Physical Journal B, 2001, 20, 133-139.	0.6	31
76	Generalized mean-spherical-approximation description of highly asymmetric hard-sphere mixtures. Journal of Physics Condensed Matter, 2000, 12, 2613-2622.	0.7	10
77	Role of the film texturing on the response of particle detectors based on CVD diamond. Microsystem Technologies, 1999, 5, 151-156.	1.2	7
78	Structural characterisation of ionising-radiation detectors based on CVD diamond films. Microsystem Technologies, 1999, 6, 23-29.	1.2	15
79	Comparative study of band-A cathodoluminescence and Raman spectroscopy in CVD diamond films. Diamond and Related Materials, 1999, 8, 640-644.	1.8	8
80	Nucleation Process of CVD Diamond on Molybdenum Substrates. , 0, , 329-343.		1