
Richard B Bankert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical evaluation of cancer immune therapy using patientâ€derived tumor antigenâ€specific T cells in a novel xenograft platform. Clinical and Translational Immunology, 2021, 10, e1246.	3.8	4
2	Rational design of a nanoparticle platform for oral prophylactic immunotherapy to prevent immunogenicity of therapeutic proteins. Scientific Reports, 2021, 11, 17853.	3.3	7
3	Novel phosphatidylserine-binding molecule enhances antitumor T-cell responses by targeting immunosuppressive exosomes in human tumor microenvironments. , 2021, 9, e003148.		18
4	Tumor-Associated Exosomes: A Potential Therapeutic Target for Restoring Anti-Tumor T Cell Responses in Human Tumor Microenvironments. Cells, 2021, 10, 3155.	4.1	11
5	Exosomes Represent an Immune Suppressive T Cell Checkpoint in Human Chronic Inflammatory Microenvironments. Immunological Investigations, 2020, 49, 726-743.	2.0	11
6	Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight, 2019, 4, .	5.0	93
7	Phosphatidylserine Is Not Just a Cleanup Crew but Also a Well-Meaning Teacher. Journal of Pharmaceutical Sciences, 2018, 107, 2048-2054.	3.3	12
8	Exosomes Associated with Human Ovarian Tumors Harbor a Reversible Checkpoint of T-cell Responses. Cancer Immunology Research, 2018, 6, 236-247.	3.4	61
9	Sialic Acid–Dependent Inhibition of T Cells by Exosomal Ganglioside GD3 in Ovarian Tumor Microenvironments. Journal of Immunology, 2018, 201, 3750-3758.	0.8	77
10	Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Scientific Reports, 2018, 8, 12905.	3.3	135
11	Patient-derived xenografts of low-grade B-cell lymphomas demonstrate roles of the tumor microenvironment. Blood Advances, 2017, 1, 1263-1273.	5.2	15
12	Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade. Cancer Immunology Research, 2015, 3, 1269-1278.	3.4	84
13	Exposure to Factor VIII Protein in the Presence of Phosphatidylserine Induces Hypo-responsiveness toward Factor VIII Challenge in Hemophilia A Mice. Journal of Biological Chemistry, 2013, 288, 17051-17056.	3.4	26
14	Human ovarian tumor ascites fluids rapidly and reversibly inhibit T cell receptor-induced NF-κB and NFAT signaling in tumor-associated T cells. Cancer Immunity, 2013, 13, 14.	3.2	27
15	Changes in ovarian tumor cell number, tumor vasculature, and T cell function monitored in vivo using a novel xenograft model. Cancer Immunity, 2013, 13, 11.	3.2	18
16	Memory T Cells in the Chronic Inflammatory Microenvironment of Nasal Polyposis are Hyporesponsive to Signaling Through the T Cell Receptor. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 423-435.	1.8	4
17	Humanized Mouse Model of Ovarian Cancer Recapitulates Patient Solid Tumor Progression, Ascites Formation, and Metastasis. PLoS ONE, 2011, 6, e24420.	2.5	105
18	T Cells and Stromal Fibroblasts in Human Tumor Microenvironments Represent Potential Therapeutic Targets. Cancer Microenvironment, 2010, 3, 29-47.	3.1	53

RICHARD B BANKERT

#	Article	IF	CITATIONS
19	Reciprocal Functional Modulation of the Activation of T Lymphocytes and Fibroblasts Derived from Human Solid Tumors. Journal of Immunology, 2010, 185, 2681-2692.	0.8	59
20	Human Nasal Polyp Microenvironments Maintained in a Viable and Functional State as Xenografts in NOD-scid IL2rl̂³null Mice. Annals of Otology, Rhinology and Laryngology, 2009, 118, 866-875.	1.1	3
21	IL-12 delivered intratumorally by multilamellar liposomes reactivates memory T cells in human tumor microenvironments. Clinical Immunology, 2009, 132, 71-82.	3.2	41
22	Targeting the TCR signaling checkpoint: a therapeutic strategy to reactivate memory T cells in the tumor microenvironment. Expert Opinion on Therapeutic Targets, 2008, 12, 477-490.	3.4	10
23	Long-Term Engraftment and Expansion of Tumor-Derived Memory T Cells Following the Implantation of Non-Disrupted Pieces of Human Lung Tumor into NOD-scid IL2Rγnull Mice. Journal of Immunology, 2008, 180, 7009-7018.	0.8	91
24	Activation of quiescent memory T lymphocytes from human tumors is enhanced by coâ€cultivation with autologous tumorâ€essociated stromal fibroblasts. FASEB Journal, 2008, 22, 1078.1.	0.5	0
25	Characterization of Human Lung Tumor-Associated Fibroblasts and Their Ability to Modulate the Activation of Tumor-Associated T Cells. Journal of Immunology, 2007, 178, 5552-5562.	0.8	223
26	Follicular Lymphoma Intratumoral CD4+CD25+GITR+ Regulatory T Cells Potently Suppress CD3/CD28-Costimulated Autologous and Allogeneic CD8+CD25â^' and CD4+CD25â^' T Cells. Journal of Immunology, 2007, 178, 4051-4061.	0.8	76
27	IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clinical Immunology, 2006, 118, 159-169.	3.2	45
28	Memory T Cells in Human Tumor and Chronic Inflammatory Microenvironments: Sleeping Beauties Re-awakened by a Cytokine Kiss. Immunological Investigations, 2006, 35, 419-436.	2.0	12
29	Membrane-Associated TGF-β1 Inhibits Human Memory T Cell Signaling in Malignant and Nonmalignant Inflammatory Microenvironments. Journal of Immunology, 2006, 177, 3082-3088.	0.8	33
30	Human Nasal Polyp Microenvironment Maintained in Viable and Functional States as Xenografts in SCID Mice. Annals of Otology, Rhinology and Laryngology, 2006, 115, 65-73.	1.1	7
31	CTLA-4 blockade augments human T lymphocyte-mediated suppression of lung tumor xenografts in SCID mice. Cancer Immunology, Immunotherapy, 2005, 54, 944-952.	4.2	18
32	Human CD4+ Effector Memory T Cells Persisting in the Microenvironment of Lung Cancer Xenografts Are Activated by Local Delivery of IL-12 to Proliferate, Produce IFN-γ, and Eradicate Tumor Cells. Journal of Immunology, 2005, 174, 898-906.	0.8	65
33	Human CD4+T Cells Present Within the Microenvironment of Human Lung Tumors Are Mobilized by the Local and Sustained Release of IL-12 to Kill Tumors In Situ by Indirect Effects of IFN-γ. Journal of Immunology, 2003, 170, 400-412.	0.8	68
34	SCID mouse models to study human cancer pathogenesis and approaches to therapy potential limitations and future directions. Frontiers in Bioscience - Landmark, 2002, 7, c44-62.	3.0	22
35	Human CD4+ effector T cells mediate indirect interleukin-12- and interferon-gamma-dependent suppression of autologous HLA-negative lung tumor xenografts in severe combined immunodeficient mice. Cancer Research, 2002, 62, 2611-7.	0.9	24
36	Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Research, 2002, 62, 7254-63.	0.9	95

RICHARD B BANKERT

#	Article	IF	CITATIONS
37	Human–SCID mouse chimeric models for the evaluation of anti-cancer therapies. Trends in Immunology, 2001, 22, 386-393.	6.8	90
38	CD40-CD40 ligand (CD154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors. International Journal of Cancer, 2001, 92, 589-599.	5.1	29
39	Antitumor efficacy of a human interleukin-12 expression plasmid demonstrated in a human peripheral blood leukocyte/human lung tumor xenograft SCID mouse model. Cancer Gene Therapy, 2001, 8, 371-377.	4.6	10
40	Cytokine immunotherapy of cancer with controlled release biodegradable microspheres in a human tumor xenograft/SCID mouse model. Cancer Immunology, Immunotherapy, 1998, 46, 21-24.	4.2	59
41	Clones of Tumor Cells Derived from a Single Primary Human Lung Tumor Reveal Different Patterns of β ₁ Integrin Expression. Cell Adhesion and Communication, 1994, 2, 345-357.	1.7	22
42	Monoclonal Antibodies and a Heterobifunctional Reagent: A Novel Approach to the Vectorial Labeling of Selected Membrane Proteins. Immunological Investigations, 1982, 11, 357-375.	0.8	5