List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598785/publications.pdf Version: 2024-02-01

VALEDIA HADABACILL

#	Article	IF	CITATIONS
1	Cellulose derivative/barium titanate composites with high refractive index, conductivity and energy density. Cellulose, 2022, 29, 863-878.	2.4	7
2	Chitosan-Based Therapeutic Systems for Superficial Candidiasis Treatment. Synergetic Activity of Nystatin and Propolis. Polymers, 2022, 14, 689.	2.0	6
3	Cu(II)/Guanidine Functionalized Disiloxane Complex of Supramolecular Structures for Visible Light-Driven Photocatalysis of Congo Red. Polymers, 2022, 14, 817.	2.0	3
4	Innovative nanostructured magnetite/wool/polysiloxane composite as magnetic adsorbent for oil spill removal. Comptes Rendus Chimie, 2022, 25, 245-260.	0.2	4
5	Influence of fuel nature on sol–gel microwave-ignited combustion synthesis of nanosized cobalt and nickel spinel ferrites. Comptes Rendus Chimie, 2022, 25, 189-202.	0.2	Ο
6	The Influence of the Hydroxyl Type on Crosslinking Process in Cyclodextrin Based Polyurethane Networks. Gels, 2022, 8, 348.	2.1	8
7	Effects of Hybrid Polymeric Material Based on Polycaprolactone on the Environment. Materials, 2022, 15, 4868.	1.3	5
8	Investigation of a biosystem based on Arthrospira platensis for air revitalisation in spacecrafts: Performance evaluation through response surface methodology. Chemosphere, 2021, 264, 128465.	4.2	4
9	Boosting catalytic wet-peroxide-oxidation performances of cobalt ferrite by doping with lanthanides for organic pollutants degradation. Journal of Environmental Chemical Engineering, 2021, 9, 104961.	3.3	12
10	Tailoring Mesoporous Titania Features by Ultrasound-Assisted Sol-Gel Technique: Effect of Surfactant/Titania Precursor Weight Ratio. Nanomaterials, 2021, 11, 1263.	1.9	10
11	Bio-based ionically cross-linked alginate composites for PEMFC potential applications. Reactive and Functional Polymers, 2021, 165, 104967.	2.0	3
12	MALDI mass spectrometry monitoring of cyclodextrin-oligolactide derivatives synthesis. Polymer, 2021, 233, 124186.	1.8	12
13	Thermo-Sensitivity of poly- <i>N</i> -isopropylacrylamide with Statistically Introduced D,L-Allylglycine Betainic Units. Journal of Macromolecular Science - Physics, 2020, 59, 100-120.	0.4	2
14	Development of Porous Titania Structure with Improved Photocatalytic Activity: Response Surface Modeling and Multi-Objective Optimization. Nanomaterials, 2020, 10, 998.	1.9	12
15	Chitosan-Sulfated Titania Composite Membranes with Potential Applications in Fuel Cell: Influence of Cross-Linker Nature. Polymers, 2020, 12, 1125.	2.0	17
16	Optical Dispersion Characteristics of Polyvinyl Alcohol Reinforced with a Nanoceramic Filler. Materiale Plastice, 2020, 57, 1-7.	0.4	5
17	Correlation Between Shear-Flow Rheology and Solution Spreading During Spin Coating of Polysilane Solutions. Macromolecular Research, 2019, 27, 1210-1220.	1.0	6
18	Optical constants and electrical conductivity of polysilanes: Effects of substituents and iodine doping. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 995-1002.	0.8	0

#	Article	IF	CITATIONS
19	(Aminophenyl)porphyrins as precursors for the synthesis of porphyrin-modified siloxanes. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1001-1012.	0.4	0
20	Porous polymer/inorganic composite matrices as efficient desiccants for air dehumidification. Applied Surface Science, 2019, 487, 1189-1197.	3.1	16
21	Nickel Complexes of Guanidine Functionalized Trisiloxane. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 2024-2034.	1.9	3
22	VISCOSE-MAGHEMITE/GOETHITE POLYMERIC COMPOSITE AS SORBENT FOR OIL SPILL CLEANUP. Environmental Engineering and Management Journal, 2019, 18, 1193-1200.	0.2	0
23	EFFECT OF SYNTHESIS PARAMETERS ON SORPTIVE PROPERTIES OF GLYCEROL-DERIVED MESOPOROUS CARBON. Environmental Engineering and Management Journal, 2019, 18, 59-69.	0.2	1
24	Optimized formulation of NiFe 2 O 4 @Ca-alginate composite as a selective and magnetic adsorbent for cationic dyes: Experimental and modeling study. Reactive and Functional Polymers, 2018, 125, 57-69.	2.0	16
25	Thermo- and pH-responsive phase separation of N-isopropylacrylamide with 4-vinylpyridine random copolymer in aqueous solutions. Colloid and Polymer Science, 2018, 296, 557-565.	1.0	6
26	Relationship between the component synthesis order of zinc ferrite–titania nanocomposites and their performances as visible light-driven photocatalysts for relevant organic pollutant degradation. Comptes Rendus Chimie, 2018, 21, 263-269.	0.2	12
27	Plasma generation in liquid as a new efficient synthesis approach of titania–zinc ferrite nano(photo)catalyst. Comptes Rendus Chimie, 2018, 21, 310-317.	0.2	4
28	Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polymer Chemistry, 2018, 9, 860-868.	1.9	48
29	StrikingÂFeatures of DPH Electronic Spectra as a Function of Multicomponent Solvent Nature. Journal of Solution Chemistry, 2018, 47, 1492-1502.	0.6	0
30	Improved Physico-chemical Properties of Mesoporous Carbon by Functionalization with Aminopropyl-polydimethylsiloxane (AP-PDMS). Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2275-2287.	1.9	6
31	Plasma effect on polyhydrosilane/metal interfacial adhesion/cohesion interactions. International Journal of Adhesion and Adhesives, 2017, 74, 131-136.	1.4	12
32	Surface hydrophobization of polyester fibers with poly(methylhydro-dimethyl)siloxane copolymers: Experimental design for testing of modified nonwoven materials as oil spill sorbents. Polymer Testing, 2017, 59, 377-389.	2.3	22
33	Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method. Journal of the American Ceramic Society, 2017, 100, 4511-4518.	1.9	12
34	Novel chitosan-functionalized samarium-doped cobalt ferrite for adsorptive removal of anionic dye from aqueous solutions. Comptes Rendus Chimie, 2017, 20, 1026-1036.	0.2	17
35	Thermoresponsive properties of N-isopropylacrylamide with methacrylic acid copolymer in media of different acidity. Macromolecular Research, 2017, 25, 680-688.	1.0	10
36	Mesoporosity Development of TiO2 Nanoparticles Depending of Applied Synthetic Method. Advanced Science Letters, 2017, 23, 5873-5875.	0.2	0

#	Article	IF	CITATIONS
37	Pullulan: A versatile coating agent for superparamagnetic iron oxide nanoparticles. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
38	Novel Synthesis Route for Chitosan-Coated Zinc Ferrite Nanoparticles as Potential Sorbents for Wastewater Treatment. Chemical Engineering Communications, 2016, 203, 1591-1599.	1.5	20
39	Oxidation vs. degradation in polysaccharides: Pullulan – A case study. European Polymer Journal, 2016, 85, 82-91.	2.6	22
40	Behavior of thermo- and pH-responsive copolymer of <i>N</i> -isopropylacrylamide and maleic acid in aqueous solutions. International Journal of Polymer Analysis and Characterization, 2016, 21, 11-17.	0.9	15
41	Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	45
42	Synthesis and Investigation of Double Stimuli-Responsive Behavior of <i>N</i> -Isopropylacrylamide and Maleic Acid Copolymer in Solutions. Journal of Macromolecular Science - Physics, 2015, 54, 1105-1121.	0.4	19
43	Three-Dimensional Nanostructures with Biocidal Activity Created on a Siloxane-Containing Copolyimide Film. Key Engineering Materials, 2015, 638, 98-103.	0.4	2
44	Organic–inorganic hybrid nanomaterials based on inorganic oxides and a mesomorphic polyazomethine. High Performance Polymers, 2015, 27, 546-554.	0.8	3
45	Glycerol-derived Mesoporous Carbon: N2-sorption and SAXS Data Evaluation. Materials Today: Proceedings, 2015, 2, 3836-3845.	0.9	4
46	Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohydrate Polymers, 2015, 116, 9-17.	5.1	84
47	Nanotechnology approaches for pain therapy through transdermal drug delivery. Current Pharmaceutical Design, 2015, 21, 6125-6139.	0.9	24
48	PNiPAM-FUNCTIONALIZED MESOPOROUS CARBON FOR THE ADSORPTION OF VITAMIN B2. Environmental Engineering and Management Journal, 2015, 14, 607-613.	0.2	4
49	Morphological Investigation of Poly[methyl(H)silane- <i>co</i> -diphenylsilane] Irradiated by XeCl Excimer Laser. International Journal of Polymer Analysis and Characterization, 2014, 19, 482-488.	0.9	Ο
50	Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. European Journal of Pharmaceutical Sciences, 2014, 62, 86-95.	1.9	57
51	Do cyclodextrins bound to dextran microspheres act as sustained delivery systems of drugs?. International Journal of Pharmaceutics, 2014, 469, 1-9.	2.6	8
52	Pulsed Electrical Discharges in Silicone Emulsion. Plasma Processes and Polymers, 2014, 11, 214-221.	1.6	1
53	Electro-optical properties of aromatic oligoazomethine/permethylated α-cyclodextrin main-chain polyrotaxanes. Chemical Physics Letters, 2014, 599, 104-109.	1.2	11
54	Synthesis, characterization and solution behaviour of oxidized pullulan. Carbohydrate Polymers, 2014, 111, 63-71.	5.1	56

#	Article	IF	CITATIONS
55	Nanocomposites Based on Aromatic Polyamide-Imide and Magnesium Hydrosilicate Nanotubes. Journal of Macromolecular Science - Physics, 2014, 53, 555-567.	0.4	12
56	Synthesis and characterization of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. Journal of Polymer Research, 2014, 21, 1.	1.2	28
57	TiO2-coated mesoporous carbon: Conventional vs. microwave-annealing process. Journal of Hazardous Materials, 2014, 278, 382-390.	6.5	27
58	Performances of clay aerogel polymer composites for oil spill sorption: Experimental design and modeling. Separation and Purification Technology, 2014, 133, 260-275.	3.9	37
59	Chemical Investigation on Various Aromatic Compounds Polymerization in Low Pressure Helium Plasma. Plasma Chemistry and Plasma Processing, 2014, 34, 1219-1232.	1.1	7
60	Poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene/permethylated β-cyclodextrin) main-chain polyrotaxane: Synthesis, characterization and surface morphology. European Polymer Journal, 2014, 50, 223-234.	2.6	17
61	Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: The size of microgels dictates the pulsatile release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 614-623.	2.0	36
62	Polyhydrosilane Mediated Synthesis of One-Dimensional Gold Nanostructures. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 621-628.	1.9	4
63	Molecular structure and electronic properties of pyridylindolizine derivative containing phenyl and phenacyl groups: Comparison between semi-empirical calculations and experimental studies. Journal of Molecular Structure, 2013, 1034, 162-172.	1.8	10
64	Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydrate Polymers, 2013, 91, 502-507.	5.1	37
65	Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization. Open Chemistry, 2013, 11, 1786-1798.	1.0	11
66	Hydrodynamic and molecular characteristics of organosilane copolymers of low molecular weight. High Performance Polymers, 2013, 25, 79-86.	0.8	3
67	Structure-directed functional properties of symmetrical and unsymmetrical Br-substituted Schiff-bases. Journal of Molecular Structure, 2013, 1049, 377-385.	1.8	15
68	Influence of ionic structure on tribological properties of poly(dimethylsiloxane–alkylene oxide) graft copolymers. Tribology International, 2013, 67, 1-10.	3.0	15
69	Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. Journal of Polymer Research, 2013, 20, 1.	1.2	54
70	Surface Modification of the Polyimide Films by Electrical Discharges in Water. Plasma Processes and Polymers, 2013, 10, 798-807.	1.6	10
71	Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres. Carbohydrate Polymers, 2013, 91, 74-84.	5.1	109
72	Collagen immobilization on polyethylene terephthalate surface after helium plasma treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1303-1310.	1.7	23

5

VALERIA HARABAGIU

#	Article	IF	CITATIONS
73	Oxidized cellulose—Survey of the most recent achievements. Carbohydrate Polymers, 2013, 93, 207-215.	5.1	144
74	Synthesis and electroâ€optical properties of polyfluorene modified with randomly distributed electronâ€donor and rotaxane electronâ€acceptor structural units in the main chain. Journal of Polymer Science Part A, 2013, 51, 1672-1683.	2.5	8
75	The thermosensitivity of pH/thermoresponsive microspheres activated by the electrostatic interaction of pHâ€sensitive units with a bioactive compound. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1661-1669.	2.1	14
76	Microwave-assisted Wurtz coupling of methylphenyldichlorosilane in solvent-free conditions. E-Polymers, 2012, 12, .	1.3	4
77	Synthesis and characterization of low-molecular-weight π-conjugated polymers covered by persilylated β-cyclodextrin. Beilstein Journal of Organic Chemistry, 2012, 8, 1505-1514.	1.3	15
78	Cellulose: Chemistry of Cellulose Derivatization. , 2012, , 283-327.		6
79	Molecular level differentiation between endâ€capped and intramolecular azofunctional oligo(εâ€caprolactone) positional isomers through liquid chromatography multistage mass spectrometry. Journal of Polymer Science Part A, 2012, 50, 2421-2431.	2.5	5
80	Prediction of the appropriate size of drug molecules that could be released by a pulsatile mechanism from pH/thermoresponsive microspheres obtained from preformed polymers. Acta Biomaterialia, 2012, 8, 1281-1289.	4.1	12
81	Studies on graft copolymerization of 3-acrylamidopropyl trimethylammonium chloride on pullulan. Carbohydrate Polymers, 2011, 84, 926-932.	5.1	46
82	XPS study of the ion-exchange capacity of the native and surface oxidized viscose fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 106-110.	2.3	13
83	Surface properties of conjugated main-chain polyrotaxanes. Chemical Physics Letters, 2011, 508, 111-116.	1.2	9
84	Structure, morphology, and thermal properties of polyrotaxanes based on calix[6]arene and modifi ed polydimethylsiloxane. Russian Journal of Applied Chemistry, 2010, 83, 109-114.	0.1	4
85	Entrapment and release of drugs by a strict "on-off―mechanism in pullulan microspheres with pendant thermosensitive groups. Biomaterials, 2010, 31, 9544-9553.	5.7	31
86	Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals. Journal of Polymer Science Part A, 2010, 48, 4790-4799.	2.5	37
87	Mass spectrometry characterization of 3â€OH butyrated βâ€cyclodextrin. Journal of Polymer Science Part A, 2010, 48, 5581-5592.	2.5	14
88	Synthesis and micellization of polydimethylsiloxane– carboxy-terminated poly(ethylene oxide) graft copolymer in aqueous and organic media and its application for the synthesis of core-shell magnetite particles. E-Polymers, 2010, 10, .	1.3	2
89	Comparison of the Mechanical Properties of Cellulose and Starch Films. Biomacromolecules, 2010, 11, 126-132.	2.6	52
90	Semi-Empirical PM3 Study On The Complexation Of $\hat{I}\pm$ -Cyclodextrin With 5-Flucytosine. , 2009, , .		0

#	Article	IF	CITATIONS
91	Polyrotaxanes of Pyrene–Triazole Conjugated Azomethine and <i>α</i> yclodextrin with High Fluorescence Properties. Macromolecular Chemistry and Physics, 2009, 210, 1440-1449.	1.1	24
92	Water soluble sulconazole-β-cyclodextrin complex: physico-chemical characterization and preliminary pharmacological studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 159-162.	1.6	8
93	Synthesis, morphology, and thermal behavior of polyrotaxanes composed of γ-cyclodextrin and polydimethylsiloxanes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 63, 355-364.	1.6	9
94	Inclusion complexes of γ-cyclodextrin and carboxyl-modified γ-cyclodextrin with C60: synthesis, characterization and controlled release application via microgels. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 64, 83-94.	1.6	11
95	Water soluble 5 FC complexes, preliminary pharmacological studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 431-435.	1.6	4
96	Polydimethylsiloxane-modified chitosan I. Synthesis and structural characterisation of graft and crosslinked copolymers. Journal of Polymer Research, 2009, 16, 73-80.	1.2	23
97	Disperse red 1 end capped oligoesters. Synthesis by noncatalyzed ring opening oligomerization and structural characterization. Journal of Polymer Science Part A, 2009, 47, 534-547.	2.5	6
98	Polydimethylsiloxane modified chitosan. Part III: Preparation and characterization of hybrid membranes. Carbohydrate Polymers, 2009, 76, 268-278.	5.1	39
99	Synthesis and characterization of a poly[2,7-(9,9-dioctylfluorene-alt-2,7-fluorene/l̂2-CD)] main chain polyrotaxane. European Polymer Journal, 2009, 45, 795-803.	2.6	28
100	Glycidoxypropylsilane-functionalized Magnetite as Precursor for Polymer-covered Core-shell Magnetic Particles. High Performance Polymers, 2009, 21, 548-561.	0.8	8
101	Mild and Selective Oxidation of Cellulose Fibers in the Presence of <i>N</i> -Hydroxyphthalimide. Biomacromolecules, 2009, 10, 2294-2299.	2.6	49
102	Inclusion complexes of 5-flucytosine with β-cyclodextrin and hydroxypropyl-β-cyclodextrin: characterization in aqueous solution and in solid state. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 117-125.	1.6	16
103	Water soluble complexes of methyl β-cyclodextrin and sulconazole nitrate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 135-142.	1.6	12
104	Polyfluorene copolymer with a multiply blocked rotaxane architecture in the main chain: Synthesis and characterization. Journal of Applied Polymer Science, 2008, 110, 2384-2392.	1.3	23
105	Morphology and properties of a polyrotaxane based on γ-cyclodextrin and a polyfluorene copolymer. Chemical Physics Letters, 2008, 465, 96-101.	1.2	20
106	Trimethylsilyl permodified cyclodextrins: Hydrolysis at the air–water interface. Thin Solid Films, 2008, 516, 1748-1754.	0.8	1
107	Structure and thermal properties of polyrotaxanes derived from γ-cyclodextrin and modified polydimethylsiloxane. Russian Journal of Applied Chemistry, 2008, 81, 2145-2150.	0.1	1
108	Polyrotaxanes composed of Î ² -cyclodextrin and polydimethylsiloxanes: synthesis, morphology and thermal behavior. High Performance Polymers, 2008, 20, 251-266.	0.8	12

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Polyrotaxanes based on Cyclodextrins and Viologen-modified Polydimethylsiloxanes. High Performance Polymers, 2008, 20, 553-566.	0.8	6
110	Piperazinyl-Modified Polysiloxanes and their Cu (II) Complexes. High Performance Polymers, 2007, 19, 270-282.	0.8	2
111	Synthesis, structure, and thermal properties of polyrotaxanes derived from β-cyclodextrin and polydimethylsiloxane. Russian Journal of Applied Chemistry, 2007, 80, 1111-1115.	0.1	4
112	Synthesis and characterization of new phenanthrolinetriether copolymers with rotaxane architecture. E-Polymers, 2006, 6, .	1.3	0
113	Interpolymer complexes between hydrophobically modified poly(methacrylic acid) and poly(N-vinylpyrrolidone). Polymer, 2005, 46, 7047-7054.	1.8	16
114	Viscometric Study of Poly(dimethylsiloxaneb-N-vinylpyrrolidone) in Water Solutions. High Performance Polymers, 2005, 17, 251-261.	0.8	3
115	Optical Properties of Poly(vinyl-g-dimethylsiloxane) Copolymers. International Journal of Polymer Analysis and Characterization, 2005, 10, 361-372.	0.9	3
116	Modified poly(?-caprolactone)s and their use for drug-encapsulating nanoparticles. Journal of Polymer Science Part A, 2004, 42, 689-700.	2.5	27
117	Synthesis and characterization of persilylated cyclodextrins. Carbohydrate Polymers, 2004, 56, 301-311.	5.1	25
118	Concentration- and pH-Dependent Conformational Changes and Aggregation of Block Copolymers of Poly(methacrylic acid) and Poly(dimethylsiloxane) in Aqueous Media, Based on Fluorescence Spectra of Pyrene and Potentiometry. Macromolecules, 2004, 37, 4623-4634.	2.2	33
119	Bioapplication Oriented Polymers. Micro- and Nanoparticles for Drug Delivery Systems. Advances in Experimental Medicine and Biology, 2004, 553, 69-82.	0.8	0
120	Detection of toluene dissolved in water by using PCS fibers excited by an inclined collimated beam. Sensors and Actuators B: Chemical, 2003, 90, 204-210.	4.0	8
121	SYNTHESIS AND PHOTOCROSSLINKING OF BENZYL (METH)ACRYLATE SUBSTITUTED POLYDIMETHYLSILOXANES: INFLUENCE OF PHOTOINITIATOR NATURE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 467-488.	1.2	0
122	Synthesis of conducting polysiloxane — polypyrrole graft copolymers. Polymer Bulletin, 2002, 47, 501-508.	1.7	15
123	Synthesis and characterisation of thermomesogenic polysiloxanes with 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione units in the main chain. European Polymer Journal, 2002, 38, 2197-2205.	2.6	13
124	Synthesis and photocrosslinking of benzyl acrylate substituted polydimethylsiloxanes. European Polymer Journal, 2000, 36, 2115-2123.	2.6	41
125	Siloxane and N-Acetyliminoethylene Based Copolymers Obtained by Combined Polymer Synthesis Techniques. Molecular Crystals and Liquid Crystals, 2000, 354, 269-286.	0.3	0
126	Ionically conducting networks derived from PEO containing aziridine groups. Polymer International, 1999, 48, 1147-1154.	1.6	5

#	ARTICLE	IF	CITATIONS
127	Behaviour of polysiloxanes with amino end groups in toluene/nitromethane mixtures. European Polymer Journal, 1998, 34, 827-832.	2.6	2
128	Synthesis of conducting H-type polysiloxane-polypyrrole block copolymers. Synthetic Metals, 1998, 97, 7-12.	2.1	34
129	Synthesis of Poly(styreneâ^'dimethylsiloxane) Block Copolymers:Â Influence of the Phase-Separated Morphologies on the Thermal Behaviors. Macromolecules, 1998, 31, 4301-4308.	2.2	46
130	Block and graft copolymers with polysiloxane and poly(N-acyliminoethylene) sequences. Angewandte Makromolekulare Chemie, 1997, 253, 139-149.	0.3	6
131	Functional Polysiloxanes. 3. Reaction of 1,3-Bis(3-Glycidoxypropyl)-1,1,3,3-Tetramethyldisiloxane with Amino Compounds. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1641-1648.	1.2	13
132	Functional Polysiloxanes. IV. An Approach to Multifunctional Cyclic Carbosiloxanes. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 671-677.	1.2	2
133	Functional polysiloxanes. Polymer Bulletin, 1994, 32, 173-178.	1.7	15
134	Functional polysiloxanes—1. Polysiloxanes containing chloromethylphenethyl groups. European Polymer Journal, 1994, 30, 309-312.	2.6	11
135	Cyclic organosilicon compounds. Polymer Bulletin, 1991, 26, 47-53.	1.7	2
136	Synthesis of block copolymers containing poly(dimethylsiloxane). Die Makromolekulare Chemie Rapid Communications, 1990, 11, 433-437.	1.1	25
137	Synthesis of silicone-vinyl block copolymers. European Polymer Journal, 1990, 26, 565-569.	2.6	26
138	Synthesis of polyester-poly(vinyl monomer) block copolymers. European Polymer Journal, 1987, 23, 921-922.	2.6	7
139	Polymer-bonded iron-molybdenum-sulphur clusters. Polymer Bulletin, 1980, 2, 521.	1.7	1