
Toru M Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/359877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telomerase Catalytic Subunit Homologs from Fission Yeast and Human. Science, 1997, 277, 955-959.	6.0	2,138
2	Reversing Time: Origin of Telomerase. Cell, 1998, 92, 587-590.	13.5	298
3	Two Modes of Survival of Fission Yeast Without Telomerase. , 1998, 282, 493-496.		259
4	Histone H2A Phosphorylation Controls Crb2 Recruitment at DNA Breaks, Maintains Checkpoint Arrest, and Influences DNA Repair in Fission Yeast. Molecular and Cellular Biology, 2004, 24, 6215-6230.	1.1	180
5	Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes and Development, 2006, 20, 1583-1596.	2.7	131
6	Telomere Binding of Checkpoint Sensor and DNA Repair Proteins Contributes to Maintenance of Functional Fission Yeast Telomeres. Genetics, 2002, 161, 1437-1452.	1.2	109
7	Retention but Not Recruitment of Crb2 at Double-Strand Breaks Requires Rad1 and Rad3 Complexes. Molecular and Cellular Biology, 2003, 23, 6150-6158.	1.1	91
8	HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature, 2010, 467, 223-227.	13.7	87
9	<scp>RPA</scp> prevents Gâ€rich structure formation at laggingâ€strand telomeres to allow maintenance of chromosome ends. EMBO Journal, 2015, 34, 1942-1958.	3.5	82
10	Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO Journal, 2009, 28, 810-820.	3.5	71
11	The Fission Yeast Rad32 (Mre11)-Rad50-Nbs1 Complex Is Required for the S-Phase DNA Damage Checkpoint. Molecular and Cellular Biology, 2003, 23, 6564-6573.	1.1	70
12	Tel1ATM and Rad3ATR kinases promote Ccq1-Est1 interaction to maintain telomeres in fission yeast. Nature Structural and Molecular Biology, 2011, 18, 1408-1413.	3.6	70
13	RFC ^{Ctf18} and the Swi1-Swi3 Complex Function in Separate and Redundant Pathways Required for the Stabilization of Replication Forks to Facilitate Sister Chromatid Cohesion in <i>Schizosaccharomyces pombe</i> . Molecular Biology of the Cell, 2008, 19, 595-607.	0.9	64
14	Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature, 2010, 467, 228-232.	13.7	63
15	Fission Yeast Tel1ATM and Rad3ATR Promote Telomere Protection and Telomerase Recruitment. PLoS Genetics, 2009, 5, e1000622.	1.5	58
16	Protection and replication of telomeres in fission yeastThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2009, 87, 747-758.	0.9	53
17	Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomycespombe. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6367-6372.	3.3	50
18	SUMOylation regulates telomere length by targeting the shelterin subunit Tpz1 ^{Tpp1} to modulate shelterin–Stn1 interaction in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5950-5955.	3.3	47

Toru M Nakamura

#	Article	IF	CITATIONS
19	LARP7-like protein Pof8 regulates telomerase assembly and poly(A)+TERRA expression in fission yeast. Nature Communications, 2018, 9, 586.	5.8	36
20	Rad22Rad52-dependent Repair of Ribosomal DNA Repeats Cleaved by Slx1-Slx4 Endonuclease. Molecular Biology of the Cell, 2006, 17, 2081-2090.	0.9	34
21	Recombination-Based Telomere Maintenance Is Dependent on Tel1-MRN and Rap1 and Inhibited by Telomerase, Taz1, and Ku in Fission Yeast. Molecular and Cellular Biology, 2008, 28, 1443-1455.	1.1	34
22	Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension. PLoS Genetics, 2013, 9, e1003936.	1.5	32
23	Cooperative Control of Crb2 by ATM Family and Cdc2 Kinases Is Essential for the DNA Damage Checkpoint in Fission Yeast. Molecular and Cellular Biology, 2005, 25, 10721-10730.	1.1	26
24	The Double-Bromodomain Proteins Bdf1 and Bdf2 Modulate Chromatin Structure to Regulate S-Phase Stress Response in <i>Schizosaccharomyces pombe</i> . Genetics, 2012, 190, 487-500.	1.2	24
25	Tpz1-Ccq1 and Tpz1-Poz1 Interactions within Fission Yeast Shelterin Modulate Ccq1 Thr93 Phosphorylation and Telomerase Recruitment. PLoS Genetics, 2014, 10, e1004708.	1.5	24
26	Copper, endoproteolytic processing of the prion protein and cell signalling. Frontiers in Bioscience - Landmark, 2010, 15, 1086.	3.0	23
27	Roles of Heterochromatin and Telomere Proteins in Regulation of Fission Yeast Telomere Recombination and Telomerase Recruitment. Journal of Biological Chemistry, 2010, 285, 5327-5337.	1.6	21
28	The fission yeast Stn1-Ten1 complex limits telomerase activity via its SUMO-interacting motif and promotes telomeres replication. Science Advances, 2018, 4, eaar2740.	4.7	21
29	SUMO-targeted ubiquitin ligase activity can either suppress or promote genome instability, depending on the nature of the DNA lesion. PLoS Genetics, 2017, 13, e1006776.	1.5	18
30	Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres. PLoS Genetics, 2016, 12, e1005943.	1.5	18
31	A Kinase-Independent Role for the Rad3ATR-Rad26ATRIP Complex in Recruitment of Tel1ATM to Telomeres in Fission Yeast. PLoS Genetics, 2010, 6, e1000839.	1.5	15
32	Telomere Regulation During the Cell Cycle in Fission Yeast. Methods in Molecular Biology, 2014, 1170, 411-424.	0.4	14
33	Ccq1-Tpz1 ^{TPP1} interaction facilitates telomerase and SHREC association with telomeres in fission yeast. Molecular Biology of the Cell, 2015, 26, 3857-3866.	0.9	11
34	Roles of the checkpoint sensor clamp Rad9-Rad1-Hus1 (911)-complex and the clamp loaders Rad17-RFC and Ctf18-RFC inSchizosaccharomyces pombetelomere maintenance. Cell Cycle, 2010, 9, 2237-2248.	1.3	9
35	The NuA4 acetyltransferase and histone H4 acetylation promote replication recovery after topoisomerase I-poisoning. Epigenetics and Chromatin, 2019, 12, 24.	1.8	9
36	A <i>tel2</i> Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ^{ATR} Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast. Molecular and Cellular Biology, 2019, 39, .	1.1	8

#	Article	IF	CITATIONS
37	To fuse or not to fuse: how do checkpoint and DNA repair proteins maintain telomeres?. Frontiers in Bioscience - Landmark, 2010, 15, 1105.	3.0	4
38	Tpz1TPP1 prevents telomerase activation and protects telomeres by modulating the Stn1-Ten1 complex in fission yeast. Communications Biology, 2019, 2, 297.	2.0	2