
Jihong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nature Genetics, 2022, 54, 694-704.	21.4	55
2	Auxin-related genes associated with leaf petiole angle at the seedling stage are involved in adaptation to low temperature in Brassica napus. Environmental and Experimental Botany, 2021, 182, 104308.	4.2	6
3	Transcriptome analysis reveals genes expression pattern of seed response to heat stress in Brassica napus L Oil Crop Science, 2021, 6, 87-96.	2.0	14
4	The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. Rice, 2021, 14, 90.	4.0	23
5	Identification of Key Genes for the Ultrahigh Yield of Rice Using Dynamic Cross-tissue Network Analysis. Genomics, Proteomics and Bioinformatics, 2020, 18, 256-270.	6.9	9
6	Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napusÂL.). BMC Genomics, 2020, 21, 139.	2.8	14
7	Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology and Biochemistry, 2020, 143, 107741.	8.8	38
8	Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nature Plants, 2019, 5, 822-832.	9.3	52
9	Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp.chinensis). Scientific Reports, 2019, 9, 5002.	3.3	95
10	Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics, 2018, 19, 720.	2.8	76
11	An Integration of Genome-Wide Association Study and Gene Co-expression Network Analysis Identifies Candidate Genes of Stem Lodging-Related Traits in Brassica napus. Frontiers in Plant Science, 2018, 9, 796.	3.6	36
12	Association mapping of cadmium-tolerant QTLs in Brassica napus L. and insight into their contributions to phytoremediation. Environmental and Experimental Botany, 2018, 155, 420-428.	4.2	26
13	Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model. Scientific Reports, 2018, 8, 8498.	3.3	28
14	Transcriptome analysis of non-heading Chinese cabbage under heat stress by RNA-seq and marker identification. Euphytica, 2017, 213, 1.	1.2	6
15	Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 1054.	3.6	68
16	Small RNA Profiles of the Rice PTGMS Line Wuxiang S Reveal miRNAs Involved in Fertility Transition. Frontiers in Plant Science, 2016, 7, 514.	3.6	24
17	Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa) Tj ETQq1	1 0.7843 3.6	314 rgBT /O
18	A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica	3.6	74

napus. Frontiers in Plant Science	e, 2016, 7, 1483
-----------------------------------	------------------

Јінолс Ни

#	Article	IF	CITATIONS
19	Development and Characterization of Polymorphic MicroRNA-Based Microsatellite Markers inNelumbo nucifera(Nelumbonaceae). Applications in Plant Sciences, 2016, 4, 1500091.	2.1	13
20	Comparative transcript profiling of alloplasmic male-sterile lines revealed altered gene expression related to pollen development in rice (Oryza sativa L). BMC Plant Biology, 2016, 16, 175.	3.6	19
21	Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics, 2016, 17, 684.	2.8	26
22	Bioinformatic Identification and Expression Analysis of Nelumbo nucifera MicroRNA and Their Targets. Applications in Plant Sciences, 2015, 3, 1500046.	2.1	9
23	Genome-Wide Identification of SSR and SNP Markers Based on Whole-Genome Re-Sequencing of a Thailand Wild Sacred Lotus (Nelumbo nucifera). PLoS ONE, 2015, 10, e0143765.	2.5	21
24	Genome-wide analysis of DNA methylation in photoperiod- and thermo-sensitive male sterile rice Peiai 64S. BMC Genomics, 2015, 16, 102.	2.8	40
25	DNA methylation changes in photoperiod-thermo-sensitive male sterile rice PA64S under two different conditions. Gene, 2014, 537, 143-148.	2.2	32
26	Characterization of conserved microRNAs from five different cucurbit species using computational and experimental analysis. Biochimie, 2014, 102, 137-144.	2.6	14
27	Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. Journal of Biotechnology, 2013, 164, 520-524.	3.8	16
28	Nucleo-cytoplasmic interactions affect RNA editing of cox2, atp6 and atp9 in alloplasmic male-sterile rice (Oryza sativa L.) lines. Mitochondrion, 2013, 13, 87-95.	3.4	18
29	Identification of conserved microRNAs and their targets in chickpea (<i>Cicer arietinum L.</i>). Plant Signaling and Behavior, 2013, 8, e23604.	2.4	12
30	Identification and Expression Analysis of microRNAs at the Grain Filling Stage in Rice(Oryza sativa) Tj ETQq0 0 0	rgBT /Ove 2.5	rlock 10 Tf 50
31	Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers. Molecular Biology Reports, 2012, 39, 3637-3647.	2.3	55
32	Robust ordered mRNA differential display: an improved method for global gene expression profiling. BioTechniques, 2011, 51, 271-275.	1.8	5

	biorechniques, 2011, 51, 271 275.		
33	Genetic diversity and differentiation of lotus (Nelumbo nucifera) accessions assessed by simple sequence repeats. Annals of Applied Biology, 2011, 159, 428-441.	2.5	18
34	Development and characterization of microsatellite markers for <i>Sagittaria trifolia</i> var.	1.7	8

Development and characterization of microsatellite markers for <i>Sagittaria trifolia</i> var. <i>sinensis</i> (Alismataceae). American Journal of Botany, 2011, 98, e36-8. 34