Xianyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598551/publications.pdf

Version: 2024-02-01

1040056 713466 27 499 9 21 citations g-index h-index papers 27 27 27 346 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing. Journal of the American Statistical Association, 2022, 117, 411-427.	3.1	9
2	Detection of Local Differences in Spatial Characteristics Between Two Spatiotemporal Random Fields. Journal of the American Statistical Association, 2022, 117, 291-306.	3.1	4
3	Optimal false discovery rate control for large scale multiple testing with auxiliary information. Annals of Statistics, 2022, 50, .	2.6	3
4	Covariate adaptive familywise error rate control for genome-wide association studies. Biometrika, 2021, 108, 915-931.	2.4	3
5	D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies. Bioinformatics, 2021, 38, 286-288.	4.1	10
6	Highâ€dimensional robust inference for Cox regression models using desparsified Lasso. Scandinavian Journal of Statistics, 2021, 48, 1068-1095.	1.4	3
7	2dFDR: a new approach to confounder adjustment substantially increases detection power in omics association studies. Genome Biology, 2021, 22, 208.	8.8	2
8	A new framework for distance and kernel-based metrics in high dimensions. Electronic Journal of Statistics, 2021, 15, .	0.7	14
9	A pseudoproxy assessment of why climate field reconstruction methods perform the way they do in time and space. Climate of the Past, 2021, 17, 2583-2605.	3.4	5
10	Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing. Genome Biology, 2020, 21, 88.	8.8	9
11	Distance Metrics for Measuring Joint Dependence with Application to Causal Inference. Journal of the American Statistical Association, 2019, 114, 1638-1650.	3.1	22
12	Initial severityâ€dependent longitudinal model with application to a randomized controlled trial of women with depression. Statistics in Medicine, 2019, 38, 1678-1689.	1.6	1
13	A Phylogeny-Regularized Sparse Regression Model for Predictive Modeling of Microbial Community Data. Frontiers in Microbiology, 2018, 9, 3112.	3 . 5	20
14	Predictive Modeling of Microbiome Data Using a Phylogeny-Regularized Generalized Linear Mixed Model. Frontiers in Microbiology, 2018, 9, 1391.	3 . 5	35
15	Simultaneous Inference for High-Dimensional Linear Models. Journal of the American Statistical Association, 2017, 112, 757-768.	3.1	67
16	White noise testing and model diagnostic checking for functional time series. Journal of Econometrics, 2016, 194, 76-95.	6.5	40
17	Comparison between spatioâ€temporal random processes and application to climate model data. Environmetrics, 2016, 27, 267-279.	1.4	7
18	On the Coverage Bound Problem of Empirical Likelihood Methods for Time Series. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2016, 78, 395-421.	2.2	2

#	Article	IF	CITATIONS
19	Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework. Journal of Econometrics, 2016, 193, 123-146.	6.5	5
20	Two sample inference for the second-order property of temporally dependent functional data. Bernoulli, $2015, 21, \ldots$	1.3	28
21	Selfâ€normalization for Spatial Data. Scandinavian Journal of Statistics, 2014, 41, 311-324.	1.4	6
22	Fixed-b asymptotics for blockwise empirical likelihood. Statistica Sinica, 2014, , .	0.3	0
23	On a general class of long run variance estimators. Economics Letters, 2013, 120, 437-441.	1.9	1
24	Fixed-smoothing asymptotics for time series. Annals of Statistics, 2013, 41, .	2.6	22
25	Testing the structural stability of temporally dependent functional observations and application to climate projections. Electronic Journal of Statistics, $2011, 5, \ldots$	0.7	31
26	Testing for Change Points in Time Series. Journal of the American Statistical Association, 2010, 105, 1228-1240.	3.1	150
27	Meromorphic solutions of a kind of functional equations of Diophantine type. Annales Polonici Mathematici, 2008, 94, 265-273.	0.5	O