Jun Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598429/publications.pdf

Version: 2024-02-01

60 papers	2,571 citations	27 h-index	197818 49 g-index
61	61	61	2529
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Mechanism of Antifungal Action of Essential Oil from Dill (Anethum graveolens L.) on Aspergillus flavus. PLoS ONE, 2012, 7, e30147.	2.5	264
2	Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. International Journal of Food Microbiology, 2011, 145, 464-470.	4.7	205
3	The control of Aspergillus flavus with Cinnamomum jensenianum HandMazz essential oil and its potential use as a food preservative. Food Chemistry, 2012, 130, 520-527.	8.2	201
4	In vitro and inÂvivo activity of essential oil from dill (Anethum graveolens L.) against fungal spoilage of cherry tomatoes. Food Control, 2011, 22, 1992-1999.	5 . 5	126
5	In vivo and in vitro antioxidant activity and α-glucosidase, α-amylase inhibitory effects of flavonoids from Cichorium glandulosum seeds. Food Chemistry, 2013, 139, 59-66.	8.2	94
6	Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay. International Journal of Food Microbiology, 2015, 202, 27-34.	4.7	87
7	Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. Journal of Medical Microbiology, 2013, 62, 1175-1183.	1.8	83
8	Perillaldehyde, a Promising Antifungal Agent Used in Food Preservation, Triggers Apoptosis through a Metacaspase-Dependent Pathway in <i>Aspergillus flavus</i> Iournal of Agricultural and Food Chemistry, 2016, 64, 7404-7413.	5.2	82
9	Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. International Journal of Biological Macromolecules, 2016, 82, 830-836.	7.5	80
10	Thirty million year deep sea records in the South China Sea. Science Bulletin, 2003, 48, 2524-2535.	1.7	75
11	iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. Fish and Shellfish Immunology, 2014, 36, 229-239.	3.6	73
12	Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Industrial Crops and Products, 2014, 59, 69-79.	5.2	65
13	Antioxidant, hepatoprotective and antifungal activities of black pepper (Piper nigrum L.) essential oil. Food Chemistry, 2021, 346, 128845.	8.2	65
14	Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry, 2022, 382, 132312.	8.2	63
15	Hydrolysis of Cellulose over Cs _x H _{3â€"x} PW ₁₂ O ₄₀ (X =) Tj E1	ГQ _{f!5} 1 0.7	784314 rgE∏
16	Properties of Sn3.8Ag0.7Cu Solder Alloy with Trace Rare Earth Element Y Additions. Journal of Electronic Materials, 2007, 36, 766-774.	2.2	60
17	Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Frontiers in Microbiology, 2019, 10, 2895.	3.5	58
18	Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans. Applied Microbiology and Biotechnology, 2017, 101, 3335-3345.	3.6	52

#	Article	IF	CITATIONS
19	Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control, 2015, 55, 54-61.	5.5	46
20	Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food and Function, 2020, 11, 689-699.	4.6	46
21	Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT - Food Science and Technology, 2020, 117, 108644.	5.2	43
22	Dysfunction of <scp>FadA AMP</scp> signalling decreases <i>Aspergillus flavus</i> resistance to antimicrobial natural preservative Perillaldehyde and <scp>AFB1</scp> biosynthesis. Environmental Microbiology, 2022, 24, 1590-1607.	3.8	42
23	Perillaldehyde, a potential preservative agent in foods: Assessment of antifungal activity against microbial spoilage of cherry tomatoes. LWT - Food Science and Technology, 2015, 60, 63-70.	5.2	40
24	Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Applied Microbiology and Biotechnology, 2019, 103, 9037-9055.	3.6	36
25	Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea. Science in China Series D: Earth Sciences, 2001, 44, 926-933.	0.9	35
26	Nerol-induced apoptosis associated with the generation of ROS and Ca2+ overload in saprotrophic fungus Aspergillus flavus. Applied Microbiology and Biotechnology, 2018, 102, 6659-6672.	3.6	35
27	Dill (Anethum graveolens L.) seed essential oil induces Candida albicans apoptosis in a metacaspase-dependent manner. Fungal Biology, 2014, 118, 394-401.	2.5	34
28	Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata. Postharvest Biology and Technology, 2021, 171, 111343.	6.0	30
29	Highly Efficient Selective Benzylation of Carbohydrates Catalyzed by Iron(III) with Silver Oxide and Bromide Anion as Coâ€catalysts. ChemCatChem, 2017, 9, 950-953.	3.7	29
30	Luteolin alleviates ochratoxin A induced oxidative stress by regulating Nrf2 and HIF- $1\hat{l}_{\pm}$ pathways in NRK-52E rat kidney cells. Food and Chemical Toxicology, 2020, 141, 111436.	3.6	28
31	Synthesis of Deoxyglycosides by Desulfurization under UV Light. Journal of Organic Chemistry, 2017, 82, 7008-7014.	3.2	26
32	Recent development in biological activities and safety concerns of perillaldehyde from perilla plants: A review. Critical Reviews in Food Science and Nutrition, 2022, 62, 6328-6340.	10.3	26
33	Effect of Perillaldehyde on Prophylaxis and Treatment of Vaginal Candidiasis in a Murine Model. Frontiers in Microbiology, 2019, 10, 1466.	3.5	25
34	Perillaldehyde Controls Postharvest Black Rot Caused by Ceratocystis fimbriata in Sweet Potatoes. Frontiers in Microbiology, 2018, 9, 1102.	3.5	24
35	Perillaldehyde: A promising antifungal agent to treat oropharyngeal candidiasis. Biochemical Pharmacology, 2020, 180, 114201.	4.4	22
36	The Molecular Mechanism of Perillaldehyde Inducing Cell Death in Aspergillus flavus by Inhibiting Energy Metabolism Revealed by Transcriptome Sequencing. International Journal of Molecular Sciences, 2020, 21, 1518.	4.1	22

#	Article	IF	CITATIONS
37	A near-IR Fluorescent Probe for Enantioselective Recognition of Amino Acids in Aqueous Solution. Journal of Organic Chemistry, 2020, 85, 7342-7348.	3.2	21
38	Structure, physicochemical properties and effects on nutrients digestion of modified soluble dietary fiber extracted from sweet potato residue. Food Research International, 2021, 150, 110761.	6.2	18
39	Induced cell death in <i>Ceratocystis fimbriata</i> by proâ€apoptotic activity of a natural organic compound, perillaldehyde, through Ca ²⁺ overload and accumulation of reactive oxygen species. Plant Pathology, 2019, 68, 344-357.	2.4	17
40	Activities of Nerol, a natural plant active ingredient, against Candida albicans in vitro and in vivo. Applied Microbiology and Biotechnology, 2020, 104, 5039-5052.	3.6	17
41	Enantioselective Fluorescent Recognition of Amino Acids in Aqueous Solution by Using a Chiral Aldehyde Probe. European Journal of Organic Chemistry, 2018, 2018, 1891-1895.	2.4	16
42	From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids. Journal of Organic Chemistry, 2021, 86, 6780-6786.	3.2	13
43	Chemoselective and enantioselective fluorescent recognition of glutamic and aspartic acids. Chemical Communications, 2020, 56, 15012-15015.	4.1	12
44	Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus. International Journal of Molecular Sciences, 2020, 21, 6994.	4.1	10
45	Polymer Amplified Enantioselectivity in the Fluorescent Recognition of Prolinol. Chemistry - A European Journal, 2017, 23, 17678-17681.	3.3	9
46	Discovery of the Endophytic Fungi from Polygonum cuspidatum and Biotransformation of Resveratrol to Pterostillbene by the Endophyte Penicillium sp. F5. Applied Biochemistry and Microbiology, 2020, 56, 313-320.	0.9	8
47	Therapeutic Potential of Perillaldehyde in Ameliorating Vulvovaginal Candidiasis by Reducing Vaginal Oxidative Stress and Apoptosis. Antioxidants, 2022, $11,178.$	5.1	7
48	Fluorescent Recognition of 1,3â€Diaminopropane in the Fluorous Phase – Greatly Enhanced Sensitivity and Selectivity. European Journal of Organic Chemistry, 2018, 2018, 1053-1059.	2.4	6
49	Genomic Analysis of Microbulbifer sp. Strain A4B-17 and the Characterization of Its Metabolic Pathways for 4-Hydroxybenzoic Acid Synthesis. Frontiers in Microbiology, 2018, 9, 3115.	3.5	5
50	Gas Chromatography–Mass Spectrometry Profiling of Volatile Compounds Reveals Metabolic Changes in a Non-Aflatoxigenic Aspergillus flavus Induced by 5-Azacytidine. Toxins, 2020, 12, 57.	3.4	5
51	Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair. Journal of Organic Chemistry, 2021, 86, 9603-9609.	3.2	5
52	Electromechanical Coupling Parameter Identification for Flexible Conductor Wire Interconnection Considering Interaction Effect in Microwave Circuits. Electronics (Switzerland), 2021, 10, 464.	3.1	4
53	Fluorescent Recognition of Functional Secondary Amines in the Fluorous Phase. European Journal of Organic Chemistry, 2019, 2019, 2533-2538.	2.4	3
54	Fluorescent Discrimination of Primary Alkyl Amines by Using a Binaphthyl Ladder Polymer. European Journal of Organic Chemistry, 2018, 2018, 1896-1901.	2.4	2

#	Article	lF	CITATION
55	Effects of Paired Associative Stimulation on Metabolites in Ischemia Stroke Rats Model as Studied by Nuclear Magnetic Resonance Spectrum. Neurochemical Research, 2021, 46, 2495-2504.	3.3	2
56	Weighted Distribution Constraint Based Prediction of Available Interval of Coaxial-to-Microstrip Flexible Interconnection. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12, 316-328.	2.5	2
57	Enantioselective Fluorescent Recognition of $\hat{l}^2 \hat{a} \in A$ mino Alcohols by a Stereoselective Cyclization. European Journal of Organic Chemistry, 0 , , .	2.4	2
58	Phase Compensation Method for Active Phased Array Antennas in Operating Environment based on Electromechanical Coupling Model., 2020,,.		1
59	Rapid chiral assay of amino compounds using diethyl squarate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 120871.	3.9	0
60	Equivalent Circuit-Based Coupling Modeling of Double Bond Ribbons Interconnection Variation in Electronic Packaging. IEEE Microwave and Wireless Components Letters, 2022, , 1-4.	3.2	0