
## William P Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598011/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Established full-scale applications for energy recovery from water: anaerobic digestion. , 2022, ,<br>99-139.                                                                                          |      | 2         |
| 2  | Bottom ash from smouldered digestate and coconut coir as an alkalinity supplement for the anaerobic digestion of fruit waste. Chemosphere, 2022, 296, 134049.                                          | 8.2  | 12        |
| 3  | Drivers of Anaerobic Methanogenesis in Sub-Tropical Reservoir Sediments. Frontiers in Environmental<br>Science, 2022, 10, .                                                                            | 3.3  | 1         |
| 4  | Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. New Biotechnology, 2021, 60, 52-61.                                                  | 4.4  | 22        |
| 5  | Organic waste biorefineries: Looking towards implementation. Waste Management, 2020, 114, 274-286.                                                                                                     | 7.4  | 91        |
| 6  | Influence of inoculum selection on the utilisation of volatile fatty acid and glucose in sulfate reducing reactors. Environmental Technology (United Kingdom), 2020, , 1-12.                           | 2.2  | 1         |
| 7  | Methodology to determine the extent of anaerobic digestion, composting and CH4 oxidation in a landfill environment. Waste Management, 2018, 76, 364-373.                                               | 7.4  | 14        |
| 8  | The uptake of anaerobic digestion for the organic fraction of municipal solid waste – Push versus pull factors. Bioresource Technology, 2018, 249, 1040-1043.                                          | 9.6  | 32        |
| 9  | Pilot scale evaluation of a model to distinguish the rates of simultaneous anaerobic digestion, composting and methane oxidation in static waste beds. Waste Management, 2018, 71, 156-163.            | 7.4  | 9         |
| 10 | Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Research, 2018, 141, 366-376.                  | 11.3 | 82        |
| 11 | A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion<br>in soil covers and shallow waste layers. Waste Management, 2017, 63, 196-202.                    | 7.4  | 8         |
| 12 | Methanotrophs: Methane Mitigation, Denitrification and Bioremediation. , 2017, , 19-40.                                                                                                                |      | 5         |
| 13 | Critical analysis of hydrogen production from mixed culture fermentation under thermophilic condition (60°C). Applied Microbiology and Biotechnology, 2016, 100, 5165-5176.                            | 3.6  | 4         |
| 14 | Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata. Waste Management, 2016, 56, 290-297.                                            | 7.4  | 6         |
| 15 | Cycling of iodine by microalgae: Iodine uptake and release by a microalgae biofilm in a groundwater<br>holding pond. Ecological Engineering, 2016, 94, 286-294.                                        | 3.6  | 18        |
| 16 | Rapid digestion of shredded MSW by sequentially flooding and draining small landfill cells. Waste<br>Management, 2016, 55, 12-21.                                                                      | 7.4  | 14        |
| 17 | The use of food waste as a carbon source for on-site treatment of nutrient-rich blackwater from an office block. Environmental Technology (United Kingdom), 2016, 37, 2368-2378.                       | 2.2  | 6         |
| 18 | Changes in glucose fermentation pathways by an enriched bacterial culture in response to regulated<br>dissolved H <sub>2</sub> concentrations. Biotechnology and Bioengineering, 2015, 112, 1177-1186. | 3.3  | 7         |

WILLIAM P CLARKE

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Methane as a Resource: Can the Methanotrophs Add Value?. Environmental Science & Technology, 2015, 49, 4001-4018.                                                                                                                                               | 10.0 | 374       |
| 20 | Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms. Journal of Hazardous Materials, 2015, 299, 577-583. | 12.4 | 71        |
| 21 | Stabilisation of microalgae: lodine mobilisation under aerobic and anaerobic conditions. Bioresource Technology, 2015, 193, 219-226.                                                                                                                            | 9.6  | 4         |
| 22 | Soluble organic compounds in oil shale sour water are degradable only after being adsorbed to combusted oil shale. Fuel, 2014, 133, 270-275.                                                                                                                    | 6.4  | 2         |
| 23 | Composting of waste algae: A review. Waste Management, 2014, 34, 1148-1155.                                                                                                                                                                                     | 7.4  | 89        |
| 24 | Fate of pathogen indicators in a domestic blend of food waste and wastewater through a two-stage anaerobic digestion system. Water Science and Technology, 2013, 67, 366-373.                                                                                   | 2.5  | 11        |
| 25 | Experimental and theoretical investigation of diffusion processes in a membrane anaerobic reactor for bio-hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 5301-5311.                                                                   | 7.1  | 14        |
| 26 | Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba<br>(Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecological Engineering, 2010, 36, 1459-1468.                                                           | 3.6  | 98        |
| 27 | Anaerobic digestion for the treatment of solid organic waste: what's hot and what's not. Waste<br>Management, 2010, 30, 1761-1762.                                                                                                                              | 7.4  | 17        |
| 28 | The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential<br>biodegradable food packaging materials. Bioresource Technology, 2009, 100, 1705-1710.                                                                               | 9.6  | 115       |
| 29 | The pursuit of fundamental research in waste management. Waste Management, 2009, 29, 1791-1792.                                                                                                                                                                 | 7.4  | 0         |
| 30 | Cellulose hydrolysis by a methanogenic culture enriched from landfill waste in a semi-continuous reactor. Bioresource Technology, 2009, 100, 1268-1273.                                                                                                         | 9.6  | 18        |
| 31 | Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization. Bioresource Technology, 2009, 100, 5219-5225.                                                                                                            | 9.6  | 41        |
| 32 | Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 2009, 43, 762-772.                                                                                                                                                         | 11.3 | 92        |
| 33 | Effect of initial biomass on cellulose hydrolysis by leachate communities. International Journal of<br>Environment and Waste Management, 2009, 3, 205.                                                                                                          | 0.3  | 0         |
| 34 | Mathematical Modeling of Batch, Single Stage, Leach Bed Anaerobic Digestion of Organic Fraction of<br>Municipal Solid Waste. Energy Systems, 2009, , 233-275.                                                                                                   | 0.5  | 3         |
| 35 | Digestion of waste bananas to generate energy in Australia. Waste Management, 2008, 28, 527-533.                                                                                                                                                                | 7.4  | 57        |
| 36 | Measurement and quantification of sessile and planktonic microbial populations during the anaerobic digestion of cellulose. Water Science and Technology, 2008, 57, 465-469.                                                                                    | 2.5  | 16        |

WILLIAM P CLARKE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Management, 2007, 27, 595-603.                                                                                         | 7.4 | 178       |
| 38 | Evaluation by respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge. Bioresource Technology, 2007, 98, 2611-2618.                                                                             | 9.6 | 11        |
| 39 | A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic<br>environments using fluorescencein situhybridization. Journal of Applied Microbiology, 2007, 103,<br>1332-1343.                    | 3.1 | 14        |
| 40 | Quantification of cellulase activity using cellulose-azure. Talanta, 2006, 69, 68-72.                                                                                                                                                   | 5.5 | 12        |
| 41 | Comparison of cellulose solubilisation rates in rumen and landfill leachate inoculated reactors.<br>Bioresource Technology, 2006, 97, 2356-2363.                                                                                        | 9.6 | 26        |
| 42 | Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnology and Bioengineering, 2005, 91, 369-378. | 3.3 | 70        |
| 43 | Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnology and Bioengineering, 2005, 92, 871-878.                                                                                                 | 3.3 | 75        |
| 44 | Sources of Hydrogen Sulfide in Groundwater on Reclaimed Land. Journal of Environmental<br>Engineering, ASCE, 2005, 131, 471-477.                                                                                                        | 1.4 | 7         |
| 45 | Identification, Detection, and Spatial Resolution of Clostridium Populations Responsible for<br>Cellulose Degradation in a Methanogenic Landfill Leachate Bioreactor. Applied and Environmental<br>Microbiology, 2004, 70, 2414-2419.   | 3.1 | 113       |
| 46 | Characterizing The Physical And Chemical Properties of a Vermicompost Filter Bed. Compost Science and Utilization, 2004, 12, 383-391.                                                                                                   | 1.2 | 2         |
| 47 | A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochemical Engineering Journal, 2003, 13, 21-33.                                                               | 3.6 | 20        |
| 48 | Cellulolytic activity in leachate during leach-bed anaerobic digestion of municipal solid waste.<br>Bioresource Technology, 2001, 80, 205-210.                                                                                          | 9.6 | 33        |
| 49 | Cost-benefit analysis of introducing technology to rapidly degrade municipal solid waste. Waste<br>Management and Research, 2000, 18, 510-524.                                                                                          | 3.9 | 8         |
| 50 | Cost-benefit analysis of introducing technology to rapidly degrade municipal solid waste. Waste<br>Management and Research, 2000, 18, 510-524.                                                                                          | 3.9 | 25        |
| 51 | Preliminary Determination of Pollutants Plume in Groundwater at Hazardous Solid Waste Disposal<br>Site by Employing CPT and Rig. Environmental Technology (United Kingdom), 2000, 21, 17-30.                                            | 2.2 | 2         |
| 52 | Effect of recirculated leachate volume on MSW degradation. Waste Management and Research, 1998,<br>16, 564-573.                                                                                                                         | 3.9 | 80        |
| 53 | Simulation of salt migration in an oil shale dump subject to natural rainfall. Fuel, 1994, 73, 1617-1623.                                                                                                                               | 6.4 | 1         |
| 54 | Simulation of leachate quality from Rundle spent shale. Fuel, 1990, 69, 1095-1098.                                                                                                                                                      | 6.4 | 0         |