Michael B Ross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3597985/publications.pdf

Version: 2024-02-01

236612 360668 5,491 35 25 citations h-index papers

g-index 35 35 35 7812 docs citations times ranked citing authors all docs

35

#	Article	IF	CITATIONS
1	Material strategies for function enhancement in plasmonic architectures. Nanoscale, 2022, 14, 602-611.	2.8	19
2	Radiative Contributions Dominate Plasmon Broadening for Post-Transition Metals in the Ultraviolet. Journal of Physical Chemistry C, 2021, 125, 19428-19437.	1.5	7
3	Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs ₂ TeX ₆ (X = Cl [–] , Br [–] , I [–]) Single Crystals. Journal of Physical Chemistry C, 2021, 125, 25126-25139.	1.5	17
4	Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons. Joule, 2020, 4, 1688-1699.	11.7	239
5	Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2, 648-658.	16.1	838
6	Carbon Dioxide Recycling Makes Waves. Joule, 2019, 3, 1814-1816.	11.7	14
7	Electrocatalytic Rate Alignment Enhances Syngas Generation. Joule, 2019, 3, 257-264.	11.7	62
8	Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection of Chemical Analytes. Journal of Physical Chemistry C, 2018, 122, 2307-2314.	1.5	49
9	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 2018, 1, 103-110.	16.1	737
10	Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018, 1, 282-290.	16.1	699
11	A Surface Reconstruction Route to High Productivity and Selectivity in CO ₂ Electroreduction toward C ₂₊ Hydrocarbons. Advanced Materials, 2018, 30, e1804867.	11.1	200
12	Structure-Sensitive CO ₂ Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. Nano Letters, 2017, 17, 1312-1317.	4.5	363
13	Polarization-Dependent Optical Response in Anisotropic Nanoparticle–DNA Superlattices. Nano Letters, 2017, 17, 2313-2318.	4.5	34
14	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	11.7	390
15	Self-Assembled Plasmonic Metamolecules Exhibiting Tunable Magnetic Response at Optical Frequencies. Journal of Physical Chemistry C, 2017, 121, 15915-15921.	1.5	20
16	General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles. Journal of the American Chemical Society, 2017, 139, 9827-9830.	6.6	245
17	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO ₂ . Journal of the American Chemical Society, 2017, 139, 9359-9363.	6.6	260
18	Structure–Function Relationships for Surface-Enhanced Raman Spectroscopy-Active Plasmonic Paper. Journal of Physical Chemistry C, 2016, 120, 20789-20797.	1.5	27

#	Article	lF	CITATIONS
19	Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society, 2016, 138, 10096-10099.	6.6	101
20	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	4. 5	3
21	Magneto-Optical Response of Cobalt Interacting with Plasmonic Nanoparticle Superlattices. Journal of Physical Chemistry Letters, 2016, 7, 4732-4738.	2.1	13
22	Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Letters, 2016, 16, 7968-7973.	4. 5	86
23	Plasmonic Metallurgy Enabled by DNA. Advanced Materials, 2016, 28, 2790-2794.	11.1	30
24	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. Journal of Physical Chemistry C, 2016, 120, 816-830.	1.5	257
25	Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Letters, 2015, 15, 4699-4703.	4.5	128
26	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	3.3	35
27	Solution-Dispersible Metal Nanorings with Deliberately Controllable Compositions and Architectural Parameters for Tunable Plasmonic Response. Nano Letters, 2015, 15, 5273-5278.	4.5	28
28	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	11.1	15
29	Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotechnology, 2015, 10, 453-458.	15.6	169
30	Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal of the American Chemical Society, 2015, 137, 13566-13571.	6.6	23
31	Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. Journal Physics D: Applied Physics, 2015, 48, 184004.	1.3	49
32	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	11.1	157
33	Aluminum and Indium Plasmonic Nanoantennas in the Ultraviolet. Journal of Physical Chemistry C, 2014, 118, 12506-12514.	1.5	84
34	Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Communications, 2014, 5, 4090.	5.8	90
35	Plasmonically Enhanced Dye-Sensitized Solar Cells. Challenges and Advances in Computational Chemistry and Physics, 2013, , 125-147.	0.6	3