Shaun M Cowley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3597541/publications.pdf Version: 2024-02-01

SHALLN M COWLEY

#	Article	IF	CITATIONS
1	The Myc/Max/Mad Network and the Transcriptional Control of Cell Behavior. Annual Review of Cell and Developmental Biology, 2000, 16, 653-699.	4.0	1,182
2	Estrogen Receptors $\hat{I}\pm$ and \hat{I}^2 Form Heterodimers on DNA. Journal of Biological Chemistry, 1997, 272, 19858-19862.	1.6	597
3	Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 2012, 482, 221-225.	13.7	527
4	Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 2003, 17, 1101-1114.	2.7	352
5	Class I HDACs Share a Common Mechanism of Regulation by Inositol Phosphates. Molecular Cell, 2013, 51, 57-67.	4.5	314
6	The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochemical Society Transactions, 2013, 41, 741-749.	1.6	261
7	Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8242-8247.	3.3	257
8	A comparison of transcriptional activation by ERα and ERβ. Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 165-175.	1.2	224
9	Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13425-13430.	3.3	196
10	Lysine-Specific Demethylase 1 Regulates the Embryonic Transcriptome and CoREST Stability. Molecular and Cellular Biology, 2010, 30, 4851-4863.	1.1	179
11	Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nature Communications, 2016, 7, 11262.	5.8	172
12	GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nature Cell Biology, 2016, 18, 21-32.	4.6	172
13	Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays in Biochemistry, 2019, 63, 97-107.	2.1	160
14	Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9840-9845.	3.3	130
15	Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood, 2013, 121, 1335-1344.	0.6	125
16	The mSin3A Chromatin-Modifying Complex Is Essential for Embryogenesis and T-Cell Development. Molecular and Cellular Biology, 2005, 25, 6990-7004.	1.1	118
17	Solution Structure of the Interacting Domains of the Mad–Sin3 Complex. Cell, 2000, 103, 655-665.	13.5	95
18	Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochemical Journal, 2018, 475, 3921-3932.	1.7	94

SHAUN M COWLEY

#	Article	IF	CITATIONS
19	Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Scientific Reports, 2018, 8, 14690.	1.6	84
20	PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chemical Communications, 2020, 56, 4476-4479.	2.2	75
21	HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nature Structural and Molecular Biology, 2004, 11, 738-746.	3.6	68
22	OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Molecular Cell, 2016, 63, 647-661.	4.5	66
23	The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure. Nature Communications, 2020, 11, 3252.	5.8	51
24	Recombinant Protein Expression for Structural Biology in HEK 293F Suspension Cells: A Novel and Accessible Approach. Journal of Visualized Experiments, 2014, , e51897.	0.2	45
25	Optimization of Class I Histone Deacetylase PROTACs Reveals that HDAC1/2 Degradation is Critical to Induce Apoptosis and Cell Arrest in Cancer Cells. Journal of Medicinal Chemistry, 2022, 65, 5642-5659.	2.9	32
26	Functional Analysis of the Mad1-mSin3A Repressor-Corepressor Interaction Reveals Determinants of Specificity, Affinity, and Transcriptional Response. Molecular and Cellular Biology, 2004, 24, 2698-2709.	1.1	31
27	Emphasizing the positive: A role for histone deacetylases in transcriptional activation. Cell Cycle, 2010, 9, 2700-2701.	1.3	30
28	Bifunctional HDAC Therapeutics: One Drug to Rule Them All?. Molecules, 2020, 25, 4394.	1.7	29
29	HDAC1 and HDAC2 Modulate TGF-β Signaling during Endothelial-to-Hematopoietic Transition. Stem Cell Reports, 2018, 10, 1369-1383.	2.3	28
30	Sin3A recruits Tet1 to the PAH1 domain via a highly conserved Sin3-Interaction Domain. Scientific Reports, 2018, 8, 14689.	1.6	27
31	Proximity-dependent biotin identification (BioID) reveals a dynamic LSD1–CoREST interactome during embryonic stem cell differentiation. Molecular Omics, 2022, 18, 31-44.	1.4	11
32	Function of estrogen receptors in breast cancer. Breast Cancer, 1997, 4, 204-208.	1.3	5
33	Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli. PLoS ONE, 2015, 10, e0120681.	1.1	3
34	Subcloning Plus Insertion (SPI) - A Novel Recombineering Method for the Rapid Construction of Gene Targeting Vectors. Journal of Visualized Experiments, 2015, , e52155.	0.2	2
35	Differential Requirements of Singleplex and Multiplex Recombineering of Large DNA Constructs. PLoS ONE, 2015, 10, e0125533.	1.1	0