Traud Winkelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3597072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of apple replant problems based on different soil disinfection treatments—links to soil microbial community structure?. Plant and Soil, 2013, 366, 617-631.	1.8	116
2	Apple Replant Disease: Causes and Mitigation Strategies. Current Issues in Molecular Biology, 2019, 30, 89-106.	1.0	98
3	Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta, 2006, 224, 508-519.	1.6	86
4	Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiology, 2014, 34, 524-533.	1.4	67
5	Induction and diagnosis of apple replant disease (ARD): a matter of heterogeneous soil properties?. Scientia Horticulturae, 2018, 241, 167-177.	1.7	67
6	Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. Current Biology, 2020, 30, 2312-2320.e5.	1.8	60
7	Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Scientia Horticulturae, 2019, 243, 583-594.	1.7	57
8	Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition. PLoS ONE, 2015, 10, e0132931.	1.1	56
9	Transcriptomic analysis of molecular responses in Malus domestica â€~M26' roots affected by apple replant disease. Plant Molecular Biology, 2017, 94, 303-318.	2.0	55
10	Effects of Soil Pre-Treatment with Basamid® Granules, Brassica juncea, Raphanus sativus, and Tagetes patula on Bacterial and Fungal Communities at Two Apple Replant Disease Sites. Frontiers in Microbiology, 2017, 8, 1604.	1.5	52
11	Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?. Frontiers in Microbiology, 2015, 6, 1224.	1.5	49
12	Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L Journal of Proteomics, 2013, 78, 123-133.	1.2	46
13	Impaired defense reactions in apple replant disease-affected roots of Malus domestica â€~M26'. Tree Physiology, 2017, 37, 1672-1685.	1.4	46
14	Effects of biofumigation using Brassica juncea and Raphanus sativus in comparison to disinfection using Basamid on apple plant growth and soil microbial communities at three field sites with replant disease. Plant and Soil, 2016, 406, 389-408.	1.8	45
15	Nutritional compound analysis and morphological characterization of spider plant (Cleome) Tj ETQq1 1 0.78431	4 rgBT /C	overlgck 10 Tf
16	From callus to embryo: a proteomic view on the development and maturation of somatic embryos in Cyclamen persicum. Planta, 2012, 235, 995-1011.	1.6	44
17	CO 2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill. and its effect on cell growth and regeneration of somatic embryos. Plant Cell Reports, 1999, 18, 863-867.	2.8	41
18	Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus. BMC Plant Biology, 2015, 15, 15.	1.6	40

#	Article	IF	CITATIONS
19	Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone. Journal of Experimental Botany, 2012, 63, 4143-4150.	2.4	39
20	Somatic Versus Zygotic Embryogenesis: Learning from Seeds. Methods in Molecular Biology, 2016, 1359, 25-46.	0.4	39
21	Evaluation of Malus genetic resources for tolerance to apple replant disease (ARD). Scientia Horticulturae, 2019, 256, 108517.	1.7	38
22	Enolases: storage compounds in seeds? Evidence from a proteomic comparison of zygotic and somatic embryos of Cyclamen persicum Mill Plant Molecular Biology, 2011, 75, 305-319.	2.0	36
23	Flow cytometric analyses in embryogenic and non-embryogenic callus lines of Cyclamen persicum Mill.: relation between ploidy level and competence for somatic embryogenesis. Plant Cell Reports, 1998, 17, 400-404.	2.8	34
24	Commercial in vitro plant production in Germany in 1985–2004. Plant Cell, Tissue and Organ Culture, 2006, 86, 319-327.	1.2	34
25	Dynamics of endophytic bacteria in plant in vitro culture: quantification of three bacterial strains in Prunus avium in different plant organs and in vitro culture phases. Plant Cell, Tissue and Organ Culture, 2016, 126, 305-317.	1.2	34
26	Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Scientia Horticulturae, 2017, 226, 268-276.	1.7	33
27	Variable DNA content of Cyclamen persicum regenerated via somatic embryogenesis: rethinking the concept of long-term callus and suspension cultures. Plant Cell, Tissue and Organ Culture, 2007, 90, 255-263.	1.2	31
28	Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell, Tissue and Organ Culture, 2009, 98, 125-134.	1.2	30
29	Protoplast isolation and plant regeneration of different genotypes of Petunia and Calibrachoa. Plant Cell, Tissue and Organ Culture, 2009, 99, 27-34.	1.2	30
30	Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2010, 101, 171-182.	1.2	30
31	Variability in Osmotic Stress Tolerance of Starch Potato Genotypes (<i>Solanum tuberosum</i> L.) as Revealed by an <i>In Vitro</i> Screening: Role of Proline, Osmotic Adjustment and Drought Response in Pot Trials. Journal of Agronomy and Crop Science, 2017, 203, 206-218.	1.7	30
32	Transcriptome profiling in leaves representing aboveground parts of apple replant disease affected Malus domestica â€~M26' plants. Scientia Horticulturae, 2017, 222, 111-125.	1.7	29
33	GelMap—A novel software tool for building and presenting proteome reference maps. Journal of Proteomics, 2011, 74, 2214-2219.	1.2	28
34	Genes Involved in Stress Response and Especially in Phytoalexin Biosynthesis Are Upregulated in Four Malus Genotypes in Response to Apple Replant Disease. Frontiers in Plant Science, 2019, 10, 1724.	1.7	27
35	Biofumigation for Fighting Replant Disease- A Review. Agronomy, 2020, 10, 425.	1.3	27
36	Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill Plant Cell Reports, 2004, 23, 1-8.	2.8	26

#	Article	IF	CITATIONS
37	Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiology Ecology, 2021, 97, .	1.3	26
38	Title is missing!. Plant Cell, Tissue and Organ Culture, 1999, 59, 39-45.	1.2	25
39	Efficacy of new inhibitors of ethylene perception in improvement of display life of kalanchoë (Kalanchoë blossfeldiana Poelln.) flowers. Postharvest Biology and Technology, 2003, 30, 169-176.	2.9	23
40	Genotypic differences in callus formation and regeneration of somatic embryos in Cyclamen persicum Mill. Euphytica, 2005, 144, 109-117.	0.6	23
41	Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress. Frontiers in Plant Science, 2015, 6, 583.	1.7	23
42	Regeneration of different Cyclamen species via somatic embryogenesis from callus, suspension cultures and protoplasts. Scientia Horticulturae, 2010, 125, 442-450.	1.7	22
43	Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiomes, 2019, 14, 8.	2.2	22
44	Molecular identification of Nectriaceae in infections of apple replant diseaseÂaffected roots collected by Harris Uni-Core punching or laser microdissection. Journal of Plant Diseases and Protection, 2020, 127, 571-582.	1.6	22
45	Removing the major allergen Bra j I from brown mustard (<i>Brassica juncea</i>) by CRISPR/Cas9. Plant Journal, 2022, 109, 649-663.	2.8	22
46	In vitro propagation of Hippeastrum × chmielii Chm. – influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell, Tissue and Organ Culture, 2005, 83, 339-346.	1.2	21
47	Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Reports, 2017, 36, 1493-1505.	2.8	21
48	Molecular Markers for Genetic Diversity Studies in African Leafy Vegetables. Advances in Bioscience and Biotechnology (Print), 2016, 07, 188-197.	0.3	21
49	Mating biology, nuclear <scp>DNA</scp> content and genetic diversity in spider plant (<i>Cleome) Tj ETQq1</i>	1 0.784314 1.0	rgBT/Overloc
50	Inheritance of the ability for regeneration via somatic embryogenesis in Cyclamen persicum. Plant Cell, Tissue and Organ Culture, 2003, 72, 43-51.	1.2	19
51	Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks. Genetic Resources and Crop Evolution, 2013, 60, 913-926.	0.8	19
52	Endophytic bacterial communities in in vitro shoot cultures derived from embryonic tissue of hybrid walnut (Juglans × intermedia). Plant Cell, Tissue and Organ Culture, 2017, 130, 153-165.	1.2	19
53	Exploring microbial determinants of apple replant disease (ARD): a microhabitat approach under split-root design. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
54	Rhizosphere microbial communities associated to rose replant disease: links to plant growth and root metabolites. Horticulture Research, 2020, 7, 144.	2.9	19

#	Article	IF	CITATIONS
55	Soil research challenges in response to emerging agricultural soil management practices. Advances in Agronomy, 2020, , 179-240.	2.4	19
56	Embryogenic Callus as Target for Efficient Transformation of Cyclamen persicum Enabling Gene Function Studies. Frontiers in Plant Science, 2018, 9, 1035.	1.7	18
57	Bacterial Endophytes in Plant Tissue Culture: Mode of Action, Detection, and Control. Methods in Molecular Biology, 2018, 1815, 69-88.	0.4	18
58	Germination of Encapsulated Somatic Embryos of Cyclamen persicum. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1093-1097.	0.5	18
59	Efficient plant regeneration from protoplasts isolated from embryogenic suspension cultures of Cyclamen persicum Mill Plant Cell, Tissue and Organ Culture, 2006, 86, 337-347.	1.2	17
60	Development stage, storage temperature and storage duration influence phytonutrient content in cowpea (Vigna unguiculata L. Walp.). Heliyon, 2018, 4, e00656.	1.4	17
61	Cleome gynandra L. origin, taxonomy and morphology: A review. African Journal of Agricultural Research Vol Pp, 2019, 14, 1568-1583.	0.2	17
62	Analysis of protoplast-derived plants of Saintpaulia ionantha H. Wendl. Plant Breeding, 1995, 114, 346-350.	1.0	16
63	Desiccation of somatic embryos ofCyclamen persicumMill Journal of Horticultural Science and Biotechnology, 2004, 79, 479-483.	0.9	16
64	Investigations on laser marking of plants and fruits. Biosystems Engineering, 2013, 116, 436-446.	1.9	16
65	Proteomic analysis of two divergently responding potato genotypes (Solanum tuberosum L.) following osmotic stress treatment in vitro. Journal of Proteomics, 2016, 143, 227-241.	1.2	16
66	Evaluation of reproductive barriers and realisation of interspecific hybridisations depending on genetic distances between species in the genus <i>Helleborus</i> . Plant Biology, 2012, 14, 576-585.	1.8	15
67	Molecular Barcoding Reveals the Genus <i>Streptomyces</i> as Associated Root Endophytes of Apple (<i>Malus domestica</i>) Plants Grown in Soils Affected by Apple Replant Disease. Phytobiomes Journal, 2021, 5, 177-189.	1.4	15
68	Nutritional composition in African nightshade (Solanum scabrum) influenced by harvesting methods, age and storage conditions. Postharvest Biology and Technology, 2019, 153, 142-151.	2.9	14
69	Genotypic variability for protoplast regeneration in Saintpaulia ionantha (H. Wendl.). Plant Cell Reports, 1995, 14, 704-7.	2.8	13
70	Interspecific somatic hybrids between Cyclamen persicum and C. coum, two sexually incompatible species. Plant Cell Reports, 2012, 31, 723-735.	2.8	13
71	RECENT ADVANCES IN PROPAGATION OF WOODY PLANTS. Acta Horticulturae, 2013, , 375-381.	0.1	13
72	Improved in vitro rooting of Prunus avium microshoots using a dark treatment and an auxin pulse. Scientia Horticulturae, 2017, 220, 52-56.	1.7	13

#	Article	lF	CITATIONS
73	Morphological characterization, genetic diversity and population structure of African nightshades (section Solanum L.). Genetic Resources and Crop Evolution, 2019, 66, 105-120.	0.8	13
74	ldentification and validation of early genetic biomarkers for apple replant disease. PLoS ONE, 2020, 15, e0238876.	1.1	13
75	Genetic analysis of adventitious root formation in vivo and in vitro in a diversity panel of roses. Scientia Horticulturae, 2020, 266, 109277.	1.7	13
76	Selection of transgenic Petunia plants using the green fluorescent protein (GFP). Plant Cell, Tissue and Organ Culture, 2011, 107, 483-492.	1.2	12
77	Interspecific crosses within the Streptocarpus subgenus Streptocarpella and intergeneric crosses between Streptocarpella and Saintpaulia ionantha genotypes. Scientia Horticulturae, 2012, 148, 215-222.	1.7	12
78	Proteomic and histological analyses of endosperm development in Cyclamen persicum as a basis for optimization of somatic embryogenesis. Plant Science, 2013, 201-202, 52-65.	1.7	12
79	Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. Frontiers in Plant Science, 2015, 6, 597.	1.7	12
80	Development of a shoot regeneration protocol for genetic transformation in Pelargonium zonale and Pelargonium peltatum hybrids. Plant Cell, Tissue and Organ Culture, 2005, 80, 33-42.	1.2	11
81	African nightshades: genetic, biochemical and metabolite diversity of an underutilised indigenous leafy vegetable and its potential for plant breeding. Journal of Horticultural Science and Biotechnology, 2018, 93, 113-121.	0.9	11
82	Genetic analysis of callus formation in a diversity panel of 96 rose genotypes. Plant Cell, Tissue and Organ Culture, 2020, 142, 505-517.	1.2	11
83	Improved Postharvest Quality of Inflorescences of fbp1::etr1-1 Transgenic Burrageara â€ [~] Stefan Isler Lava Flow'. Journal of Plant Growth Regulation, 2016, 35, 390-400.	2.8	10
84	Changed composition of metabolites in Solanum tuberosum subjected to osmotic stress in vitro: Is sorbitol taken up?. Plant Cell, Tissue and Organ Culture, 2016, 127, 195-206.	1.2	9
85	Clonal Propagation of Cyclamen persicum Via Somatic Embryogenesis. Methods in Molecular Biology, 2010, 589, 281-290.	0.4	8
86	Analysis of the taxonomic subdivision within the genus Helleborus by nuclear DNA content and genome-wide DNA markers. Scientia Horticulturae, 2011, 128, 38-47.	1.7	8
87	In vitro screening of potato genotypes for osmotic stress tolerance. Open Agriculture, 2017, 2, .	0.7	8
88	Microscopic evidence of Nectriaceae and other microbes in infected fine root tissue of replant diseased apple plants. European Journal of Horticultural Science, 2021, 86, 29-40.	0.3	8
89	Split-root approach reveals localized root responses towards apple replant disease (ARD) in terms of ARD biomarker gene expression and content of phenolic compounds. Scientia Horticulturae, 2021, 286, 110117.	1.7	8
90	Formation and exudation of biphenyl and dibenzofuran phytoalexins by roots of the apple rootstock M26 grown in apple replant disease soil. Phytochemistry, 2021, 192, 112972.	1.4	8

#	Article	IF	CITATIONS
91	Networks of free-living nematodes and co-extracted fungi, associated with symptoms of apple replant disease. Applied Soil Ecology, 2022, 172, 104368.	2.1	8
92	Evaluation of Apple Root-Associated Endophytic Streptomyces pulveraceus Strain ES16 by an OSMAC-Assisted Metabolomics Approach. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	7
93	INTERSPECIFIC HYBRIDS OF CYCLAMEN PERSICUM MILL. X CYCLAMEN PURPURASCENS MILL.: PROPAGATION, SOMACLONAL VARIATION, RESISTANCE TO FUSARIUM WILT AND SUITABILITY AS AN OUTDOOR CROP. Acta Horticulturae, 2000, , 309-310.	0.1	6
94	Development of next-generation sequencing (NGS)-based SSRs in African nightshades: Tools for analyzing genetic diversity for conservation and breeding. Scientia Horticulturae, 2018, 235, 152-159.	1.7	6
95	Observations on early fungal infections with relevance for replant disease in fine roots of the rose rootstock Rosa corymbifera 'Laxa'. Scientific Reports, 2020, 10, 22410.	1.6	6
96	Alleviation of Nematode-Mediated Apple Replant Disease by Pre-Cultivation of Tagetes. Horticulturae, 2021, 7, 433.	1.2	5
97	Dynamics of Bacterial Root Endophytes of Malus domestica Plants Grown in Field Soils Affected by Apple Replant Disease. Frontiers in Microbiology, 2022, 13, 841558.	1.5	5
98	Identification of Candidate Genes Associated With Tolerance to Apple Replant Disease by Genome-Wide Transcriptome Analysis. Frontiers in Microbiology, 2022, 13, .	1.5	5
99	Ornamentals. Biotechnology in Agriculture and Forestry, 2010, , 369-391.	0.2	4
100	Establishment of an in vitro propagation and transformation system of Balanites aegyptiaca. Plant Cell, Tissue and Organ Culture, 2016, 125, 457-470.	1.2	4
101	The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. Frontiers in Plant Science, 2021, 12, 702985.	1.7	4
102	CYTOLOGICAL INVESTIGATIONS IN MIDDAY FLOWERS (AIZOACEAE) REVEAL HIGH DNA CONTENTS IN DIFFERENT SOMATIC TISSUES AND POTENTIAL OCCURRENCE OF UNREDUCED MALE GAMETES. Acta Horticulturae, 2015, , 437-444.	0.1	3
103	Development of markers for shoot organogenesis in roses. Acta Horticulturae, 2019, , 7-14.	0.1	3
104	Correction to: Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. Environmental Microbiomes, 2019, 14, .	2.2	3
105	Rose replant disease: detailed analyses of plant reactions, root endophytes and rhizosphere microbial communities. Acta Horticulturae, 2020, , 97-104.	0.1	3
106	Propagation of 285-year-old alley linden (Tilia × vulgaris) trees via long cuttings. European Journal of Horticultural Science, 2020, 85, 160-168.	0.3	3
107	Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. SSRN Electronic Journal, 0, , .	0.4	3
108	AGROBACTERIUM-MEDIATED TRANSFORMATION OF PELARGONIUM (PELARGONIUM ZONALE HYBRIDS AND) Tj	ETQq000	D rgBT /Overle

#	Article	IF	CITATIONS
109	The ethylene 2 receptor gene as a robust molecular marker for intergeneric somatic hybrids between <i>Petunia</i> and <i>Calibrachoa</i> . Plant Breeding, 2009, 129, 448.	1.0	2
110	DIGE Analysis of Plant Tissue Proteomes Using a Phenolic Protein Extraction Method. Methods in Molecular Biology, 2012, 854, 335-342.	0.4	2
111	Localization and overcoming of hybridization barriers in Delosperma and Lampranthus (Aizoaceae). Euphytica, 2016, 211, 255-275.	0.6	2
112	Paving the way for large-scale micropropagation of JuglansÂ×Âintermedia using genetically identified hybrid seed. Plant Cell, Tissue and Organ Culture, 2016, 126, 153-166.	1.2	2
113	Flow cytometric analyses of somatic and pollen nuclei in midday flowers (Aizoaceae). Caryologia, 0, , 1-12.	0.2	2
114	Factors affecting shoot multiplication and rooting of walnut (<i>Juglans regia</i> L.) in vitro. Acta Horticulturae, 2017, , 525-530.	0.1	2
115	In vitro plant regeneration from ovules of Taraxacum officinale and Taraxacum koksaghyz. African Journal of Biotechnology, 2017, 16, 1764-1775.	0.3	2
116	Evaluation of tolerance to apple replant disease (ARD) in Malus germplasm. Acta Horticulturae, 2021, , 327-334.	0.1	2
117	Apple Replant Disease: Causes and Mitigation Strategies. , 2018, , .		2
118	ESTABLISHMENT AND OPTIMIZATION OF AN EFFICIENT IN VITRO REGENERATION SYSTEM OF ONCIDIUM, WILSONARA, ODONTOCIDIUM AND VUYLSTEKEARA. Acta Horticulturae, 2010, , 445-452.	0.1	1
119	ESTABLISHMENT OF PROTEOME REFERENCE MAPS FOR SOMATIC AND ZYGOTIC EMBRYOS OF CYCLAMEN PERSICUM MILL Acta Horticulturae, 2010, , 239-242.	0.1	1
120	OVULE CULTURE OF HELLEBORUS SPECIES. Acta Horticulturae, 2010, , 195-200.	0.1	1
121	Morphological and Genetic Analyses of Hellebore Leaf Spot Disease Isolates from Different Geographic Origins Show Low Variability and Reveal Molecular Evidence for Reclassification into Didymellaceae. Journal of Phytopathology, 2011, 159, 665-675.	0.5	1
122	NUCLEAR DNA CONTENT AND GENETIC RELATIONSHIPS BASED ON AFLP DATA IN HELLEBORUS. Acta Horticulturae, 2012, , 157-162.	0.1	1
123	INTERSPECIFIC HYBRIDISATION IN THE GENUS HELLEBORUS. Acta Horticulturae, 2015, , 301-308.	0.1	1
124	What can we learn from seeds? Somatic versus zygotic embryogenesis. Acta Horticulturae, 2017, , 1-12.	0.1	1
125	TOWARDS A BETTER UNDERSTANDING OF SOMATIC EMBRYOGENESIS IN CYCLAMEN PERSICUM. Acta Horticulturae, 2011, , 15-23.	0.1	1
126	Helleborus. Handbook of Plant Breeding, 2018, , 439-452.	0.1	1

8

#	Article	IF	CITATIONS
127	Biotechnology of ornamental plants: when beauty joins science—preface from the editors. Plant Cell, Tissue and Organ Culture, 0, , .	1.2	1
128	PROTEOMIC ANALYSES OF SOMATIC AND ZYGOTIC EMBRYOS AND ENDOSPERM TISSUE OF CYCLAMEN PERSICUM. Acta Horticulturae, 2006, , 163-170.	0.1	0
129	In-vitro-Regeneration und Agrobacterium tumefaciens-vermittelter Gentransfer bei Oncidium 'Sweet Sugar'. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2007, 2, 111-111.	0.5	0
130	GREEN FLUORESCENT PROTEIN (GFP): A TOOL FOR SELECTING TRANSGENIC PETUNIA PLANTS WITH HIGHER CONSUMER ACCEPTANCE. Acta Horticulturae, 2012, , 217-222.	0.1	0
131	Effect of photoperiod and temperature on flower induction in three Aizoaceae genera. European Journal of Horticultural Science, 2016, 81, 204-211.	0.3	0
132	Advances in conventional breeding techniques for ornamentals. Burleigh Dodds Series in Agricultural Science, 2020, , 119-148.	0.1	0
133	Elucidating the genetic mechanisms underlying tolerance to apple replant disease (ARD). Acta Horticulturae, 2021, , 49-56.	0.1	0
134	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0
135	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0
136	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0
137	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0
138	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0
139	Identification and validation of early genetic biomarkers for apple replant disease. , 2020, 15, e0238876.		0