Clara Jule Marie Hoppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3597031/publications.pdf

Version: 2024-02-01

393982 454577 1,261 30 19 30 citations h-index g-index papers 38 38 38 1815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Always ready? Primary production of Arctic phytoplankton at the end of the polar night. Limnology and Oceanography Letters, 2022, 7, 167-174.	1.6	5
2	Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Nature Communications, 2022, 13 , .	5.8	19
3	Pelagic and iceâ€nssociated microalgae under elevated light and <scp>pCO₂</scp> : Contrasting physiological strategies in two Arctic diatoms. Limnology and Oceanography, 2022, 67, 1895-1910.	1.6	2
4	Revealing environmentally driven population dynamics of an Arctic diatom using a novel microsatellite <scp>PoolSeq</scp> barcoding approach. Environmental Microbiology, 2021, 23, 3809-3824.	1.8	6
5	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
6	Arctic sea ice algae differ markedly from phytoplankton in their ecophysiological characteristics. Marine Ecology - Progress Series, 2021, 666, 31-55.	0.9	4
7	Airborne bacteria and particulate chemistry capture Phytoplankton bloom dynamics in an Arctic fjord. Atmospheric Environment, 2021, 256, 118458.	1.9	11
8	Tight benthic-pelagic coupling drives seasonal and interannual changes in iron‑sulfur cycling in Arctic fjord sediments (Kongsfjorden, Svalbard). Journal of Marine Systems, 2021, , 103645.	0.9	5
9	Spatial and Temporal Variability of Ice Algal Trophic Markers—With Recommendations about Their Application. Journal of Marine Science and Engineering, 2020, 8, 676.	1.2	18
10	Higher sensitivity towards light stress and ocean acidification in an Arctic seaâ€iceâ€associated diatom compared to a pelagic diatom. New Phytologist, 2020, 226, 1708-1724.	3.5	26
11	The Arctic picoeukaryote <i>Micromonas pusilla</i> benefits from ocean acidification under constant and dynamic light. Biogeosciences, 2020, 17, 635-647.	1.3	12
12	Kongsfjorden as Harbinger of the Future Arctic: Knowns, Unknowns and Research Priorities. Advances in Polar Ecology, 2019, , 537-562.	1.3	15
13	Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Global Change Biology, 2019, 25, 2869-2884.	4.2	34
14	The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges. Reviews of Geophysics, 2019, 57, 623-708.	9.0	105
15	Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance. Polar Biology, 2018, 41, 399-413.	0.5	23
16	Fast reactivation of photosynthesis in arctic phytoplankton during the polar night ¹ . Journal of Phycology, 2018, 54, 461-470.	1.0	43
17	Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nature Climate Change, 2018, 8, 529-533.	8.1	60
18	Resilience by diversity: Large intraspecific differences in climate change responses of an Arctic diatom. Limnology and Oceanography, 2018, 63, 397-411.	1.6	48

#	Article	lF	CITATIONS
19	The Arctic picoeukaryote & amp;lt;i& amp;gt; Micromonas pusilla & amp;lt;/i& amp;gt; benefits synergistically from warming and ocean acidification. Biogeosciences, 2018, 15, 4353-4365.	1.3	44
20	Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 138, 63-73.	0.6	42
21	Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean. Limnology and Oceanography, 2017, 62, 898-921.	1.6	43
22	Functional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance. Frontiers in Marine Science, 2017, 4, .	1.2	24
23	Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Marine Ecology - Progress Series, 2017, 578, 35-50.	0.9	33
24	Ocean acidification decreases the lightâ€use efficiency in an A ntarctic diatom under dynamic but not constant light. New Phytologist, 2015, 207, 159-171.	3.5	88
25	Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 98, 115-124.	0.6	40
26	Unexpected Levels of Biological Activity during the Polar Night Offer New Perspectives on a Warming Arctic. Current Biology, 2015, 25, 2555-2561.	1.8	163
27	Are boundary conditions in surface productivity at the Southern Polar Front reflected in benthic activity?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 108, 51-59.	0.6	9
28	Iron Limitation Modulates Ocean Acidification Effects on Southern Ocean Phytoplankton Communities. PLoS ONE, 2013, 8, e79890.	1.1	88
29	Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences, 2012, 9, 2401-2405.	1.3	66
30	Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 2011, 406, 54-62.	0.7	95