Jin-Liang Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596874/publications.pdf Version: 2024-02-01

LIN-LIANC SHAO

#	Article	IF	CITATIONS
1	Opinion Dynamics of Social Networks With Intermittent-Influence Leaders. IEEE Transactions on Computational Social Systems, 2023, 10, 1073-1082.	3.2	10
2	Seeking Tracking Consensus for General Linear Multiagent Systems With Fixed and Switching Signed Networks. IEEE Transactions on Cybernetics, 2022, 52, 6697-6706.	6.2	4
3	Asynchronous Tracking Control of Leader–Follower Multiagent Systems With Input Uncertainties Over Switching Signed Digraphs. IEEE Transactions on Cybernetics, 2022, 52, 6379-6390.	6.2	48
4	Leader-Follower Opinion Dynamics of Signed Social Networks With Asynchronous Trust/Distrust Level Evolution. IEEE Transactions on Network Science and Engineering, 2022, 9, 495-509.	4.1	19
5	Cucker-Smale flocking over cooperation-competition networks. Automatica, 2022, 135, 109988.	3.0	35
6	Locating Link Failures in WSNs via Cluster Consensus and Graph Decomposition. IEEE/ACM Transactions on Networking, 2022, 30, 2304-2314.	2.6	0
7	Bipartite Tracking Consensus of Generic Linear Agents With Discrete-Time Dynamics Over Cooperation–Competition Networks. IEEE Transactions on Cybernetics, 2021, 51, 5225-5235.	6.2	37
8	Scaled Tracking Consensus in Discrete-Time Second-Order Multiagent Systems With Random Packet Dropouts. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7745-7751.	5.9	20
9	Distributed Localization in Wireless Sensor Networks Under Denial-of-Service Attacks. , 2021, 5, 493-498.		14
10	An Analysis on Optimal Attack Schedule Based on Channel Hopping Scheme in Cyber-Physical Systems. IEEE Transactions on Cybernetics, 2021, 51, 994-1003.	6.2	26
11	Detecting Hierarchical and Overlapping Network Communities Based on Opinion Dynamics. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	4.0	Ο
12	Bipartite Containment Control for General Linear Multiagent Systems under Denial-of-Service Attacks. , 2021, , .		2
13	Collective Behavior of Multileader Multiagent Systems With Random Interactions Over Signed Digraphs. IEEE Transactions on Control of Network Systems, 2021, 8, 1394-1405.	2.4	7
14	Leader–Follower Flocking for Discrete-Time Cucker–Smale Models With Lossy Links and General Weight Functions. IEEE Transactions on Automatic Control, 2021, 66, 4945-4951.	3.6	32
15	Moran's Index-Based Tensor Decomposition for Eddy Current Pulsed Thermography Sequence Processing. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	6
16	Bipartite Tracking Consensus for General Linear Multi-Agent Systems with Asynchronous Communications over Signed Networks. , 2021, , .		0
17	Sub-Super-stochastic Matrix with Applications to Bipartite Tracking Control over Signed Networks. SIAM Journal on Control and Optimization, 2021, 59, 4563-4589.	1.1	51
18	Containment Control of Asynchronous Discrete-Time General Linear Multiagent Systems With Arbitrary Network Topology. IEEE Transactions on Cybernetics, 2020, 50, 2546-2556.	6.2	59

JIN-LIANG SHAO

#	Article	IF	CITATIONS
19	Optimal Attack Strategy Against Wireless Networked Control Systems With Proactive Channel Hopping. IEEE Transactions on Industrial Informatics, 2020, 16, 2436-2446.	7.2	5
20	Sampled-data scaled group consensus for second-order multi-agent systems with switching topologies and random link failures. Journal of the Franklin Institute, 2020, 357, 2868-2881.	1.9	21
21	Optimal Energy Allocation Against Denial-of-Service Attack in Cache-enabled Wireless Networks. , 2020, , .		0
22	Multi-Agent Bipartite Containment over Time-Varying Structurally Balanced Networks. , 2020, , .		0
23	Optimizing Attack Schedules Based on Energy Dispatch Over Two-Hop Relay Networks. IEEE Transactions on Automatic Control, 2020, 65, 3832-3846.	3.6	12
24	Consensus tracking control of discreteâ€time secondâ€order agents over switching signed digraphs with arbitrary antagonistic relations. International Journal of Robust and Nonlinear Control, 2020, 30, 4826-4838.	2.1	6
25	Path selection with Nash Qâ€learning for remote state estimation over multihop relay network. International Journal of Robust and Nonlinear Control, 2020, 30, 4331-4344.	2.1	6
26	Containment control of second-order multi-agent systems via asynchronous sampled-data control. , 2020, , .		1
27	Reinforcement Learning Based Anti-Jamming Schedule in Cyber-Physical Systems. IFAC-PapersOnLine, 2020, 53, 2501-2506.	0.5	Ο
28	Dynamics of Generic Linear Agents Over Signed Networks Without Structural Constraints. IFAC-PapersOnLine, 2020, 53, 2459-2464.	0.5	2
29	Group consensus of continuous-time second-order multi-agent systems via asynchronous sampled-data control. , 2020, , .		1
30	Optimal Energy Allocation based DoS Attack over Remote State Estimation with the Relay. , 2020, , .		0
31	Application of Tensor Decomposition Methods In Eddy Current Pulsed Thermography Sequences Processing. , 2020, , .		2
32	Opinion Dynamics Driven Under Leadership in Cooperation-Competition Social Networks. , 2020, , .		1
33	Cucker–Smale flocking under rooted leadership and time-varying heterogeneous delays. Applied Mathematics Letters, 2019, 98, 453-460.	1.5	20
34	Bipartite containment tracking in second-order multi-agent systems over switching cooperation-competition networks. , 2019, , .		0
35	Dynamic Social-Aware Peer Selection for Cooperative Relay Management With D2D Communications. IEEE Transactions on Communications, 2019, 67, 3124-3139.	4.9	36
36	Asynchronous Containment Control of High-Order Multi-Agent Systems with Switching Topologies. , 2019, , .		2

JIN-LIANG SHAO

#	Article	IF	CITATIONS
37	An analysis on containment control for discrete-time second-order multi-agent systems with asynchronous intermittent communication. Neurocomputing, 2019, 339, 10-16.	3.5	6
38	Jamming Energy Dispatch Strategy in Two-hop Relay System. , 2019, , .		0
39	Scaled leader-following consensus of networked agents under packet losses. , 2019, , .		1
40	Analysis of containment control for multi-agent systems based on broadcast gossip algorithm. , 2019, ,		1
41	Cooperative containment control in time-delayed multi-agent systems with discrete-time high-order dynamics under dynamically changing topologies. Journal of the Franklin Institute, 2019, 356, 2441-2462.	1.9	11
42	On Leader–Follower Consensus With Switching Topologies: An Analysis Inspired by Pigeon Hierarchies. IEEE Transactions on Automatic Control, 2018, 63, 3588-3593.	3.6	85
43	Containment control for heterogeneous multi-agent systems with asynchronous updates. Information Sciences, 2018, 436-437, 74-88.	4.0	37
44	Couple-group consensus for second-order multi-agent systems with the effect of second-order neighbours' information. Transactions of the Institute of Measurement and Control, 2018, 40, 1726-1737.	1.1	5
45	Event-triggered containment control for second-order multi-agent systems with sampled position data. ISA Transactions, 2018, 73, 91-99.	3.1	35
46	Containment Control of Second-Order Multi-Agent Systems Via Sampled-Data Control. , 2018, , .		0
47	Leader-Following Consensus for High-Order Multi-Agent Systems with Heterogeneous Topologies. , 2018, , .		1
48	Consensus seeking in heterogeneous second-order multi-agent systems with switching topologies and random link failures. Neurocomputing, 2018, 319, 188-195.	3.5	22
49	Distributed containment of heterogeneous multi-agent systems with switching topologies. Neurocomputing, 2018, 312, 41-48.	3.5	24
50	Distributed containment control for asynchronous discrete-time second-order multi-agent systems with switching topologies. Applied Mathematics and Computation, 2018, 336, 47-59.	1.4	15
51	Asynchronous group consensus for discrete-time heterogeneous multi-agent systems under dynamically changing interaction topologies. Information Sciences, 2018, 463-464, 282-293.	4.0	59
52	Distributed consensus tracking for discrete-time second-order multi-agent systems under asynchronous situation. , 2018, , .		0
53	On the asynchronous bipartite consensus for discrete-time second-order multi-agent systems with switching topologies. Neurocomputing, 2018, 316, 105-111.	3.5	18
54	Game Theory-Based Anti-Jamming Strategies for Frequency Hopping Wireless Communications. IEEE Transactions on Wireless Communications, 2018, 17, 5314-5326.	6.1	60

Jin-Liang Shao

#	Article	IF	CITATIONS
55	Asynchronous containment control for discrete-time second-order multi-agent systems with time-varying delays. Journal of the Franklin Institute, 2017, 354, 8552-8569.	1.9	49
56	Containment control for general discrete-time second-order multi-agent systems. , 2017, , .		1
57	Analysis of asynchronous containment control problem for discrete-time multi-agent systems. , 2017, ,		1
58	A novel analysis on the efficiency of hierarchy among leader-following systems. Automatica, 2016, 73, 215-222.	3.0	52
59	Group consensus for second-order discrete-time multi-agent systems with time-varying delays under switching topologies. Neurocomputing, 2016, 207, 805-812.	3.5	32
60	Optimization of formation for multi-agent systems based on LQR. Frontiers of Information Technology and Electronic Engineering, 2016, 17, 96-109.	1.5	8
61	Group consensus of multi-agent systems with communication delays. Neurocomputing, 2016, 171, 1666-1673.	3.5	67
62	Hâ^žConsensus for Discrete-Time Multiagent Systems. Discrete Dynamics in Nature and Society, 2015, 2015, 1-6.	0.5	2
63	Exponential stability criterion for interval neural networks with discrete and distributed delays. Applied Mathematics and Computation, 2015, 250, 121-130.	1.4	26
64	Formation Control of Second-Order Multiagent Systems with Time-Varying Delays. Mathematical Problems in Engineering, 2014, 2014, 1-8.	0.6	5
65	Group Consensus with a Dynamic Leader for Multiagent Systems via Sampled-Data Control. Discrete Dynamics in Nature and Society, 2014, 2014, 1-9.	0.5	Ο
66	Leader-following formation control for second-order multi-agent systems with time-varying delays. Transactions of the Institute of Measurement and Control, 2014, 36, 627-636.	1.1	22
67	Consensus of Multiagent Systems with Sampled Information and Noisy Measurements. Discrete Dynamics in Nature and Society, 2013, 2013, 1-9.	0.5	1
68	Second-Order Leader-Following Consensus of Multiagent Systems with Time Delays. Mathematical Problems in Engineering, 2013, 2013, 1-8.	0.6	5
69	New Results for Periodic Solution of High-Order BAM Neural Networks with Continuously Distributed Delays and Impulses. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.4	1
70	Leader-Following Consensus in Networks of Agents with Nonuniform Time-Varying Delays. Mathematical Problems in Engineering, 2012, 2012, 1-14.	0.6	8
71	Further analysis on global robust exponential stability of neural networks with time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 1117-1124.	1.7	16
72	Consensus of second-order multi-agent systems with nonuniform time-varying delays. Neurocomputing, 2012, 97, 410-414.	3.5	73

JIN-LIANG SHAO

#	Article	IF	CITATIONS
73	Improved global robust exponential stability criteria for interval neural networks with time-varying delays. Expert Systems With Applications, 2011, 38, 15587-15593.	4.4	21
74	Some improved criteria for global robust exponential stability of neural networks with time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3782-3794.	1.7	23
75	Novel criteria for global robust exponential stability of neural networks with time-varying delays via LMI approach. International Journal of Computer Mathematics, 2010, 87, 2188-2201.	1.0	2
76	Linear system based approach for solving some related problems of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>M</mml:mi></mml:mrow>-matrices. Linear Algebra and Its Applications, 2010, 432, 327-337.</mml:math 	0.4	0
77	An analysis on global robust exponential stability of neural networks with time-varying delays. Neurocomputing, 2009, 72, 1993-1998.	3.5	11
78	Global Asymptotic Robust Stability and Global Exponential Robust Stability of Neural Networks with Time-Varying Delays. Neural Processing Letters, 2009, 30, 229-241.	2.0	4
79	A new result on global exponential robust stability of neural networks with time-varying delays. Journal of Control Theory and Applications, 2009, 7, 315-320.	0.8	11
80	A Note on "Global Robust Stability Criteria for Interval Delayed Neural Networks Via an LMI Approach― IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1198-1202.	2.2	6
81	A Note on Global Exponentially Stability of Neural Networks with Multiple Time Delays. , 2007, , .		0
82	Convergence and comparison results for double splittings of Hermitian positive definite matrices. Calcolo, 2007, 44, 127-135.	0.6	13
83	On Global Asymptotic Stability of a Class of Neural Networks with Time Delays. , 2006, , .		0