
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596757/publications.pdf Version: 2024-02-01

Нш 7нллс

#	Article	IF	CITATIONS
1	Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology. Chinese Journal of Chemical Engineering, 2022, 42, 399-405.	1.7	6
2	Photo-Fenton degradation of carbamazepine and ibuprofen by iron-based metal-organic framework under alkaline condition. Journal of Hazardous Materials, 2022, 424, 127698.	6.5	18
3	Removal of diesel from soil washing effluent by electro-enhanced Fe2+ activated persulfate process. Journal of Electroanalytical Chemistry, 2022, 906, 115995.	1.9	11
4	Efficient catalyst prepared from water treatment residuals and industrial glucose using hydrothermal treatment: Preparation, characterization and its catalytic performance for activating peroxymonosulfate to degrade imidacloprid. Chemosphere, 2022, 290, 133326.	4.2	12
5	Performance investigation of electrochemical assisted HClO/Fe2+ process for the treatment of landfill leachate. Environmental Science and Pollution Research, 2022, 29, 46875-46884.	2.7	6
6	Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. Environmental Science & Technology, 2022, 56, 78-97.	4.6	445
7	Highly efficient sunlight-driven self-cleaning electrospun nanofiber membrane NM88B@HPAN for water treatment. Journal of Cleaner Production, 2022, 355, 131812.	4.6	15
8	A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant. Journal of Environmental Chemical Engineering, 2022, 10, 107797.	3.3	16
9	Nonradical electron transfer-based peroxydisulfate activation by a Mnâ^'Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A. Journal of Hazardous Materials, 2022, 436, 129172.	6.5	21
10	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	1.6	24
11	A Site Distance Effect Induced by Reactant Molecule Matchup in Singleâ€Atom Catalysts for Fenton‣ike Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	105
12	Efficient removal of bisphenol A with activation of peroxydisulfate via electrochemically assisted Fe(III)-nitrilotriacetic acid system under neutral condition. Journal of Hazardous Materials, 2021, 403, 123874.	6.5	30
13	Enhanced visible-light photocatalysis of clofibric acid using graphitic carbon nitride modified by cerium oxide nanoparticles. Journal of Hazardous Materials, 2021, 405, 124204.	6.5	33
14	Phenanthrene decomposition in soil washing effluents using UVB activation of hydrogen peroxide and peroxydisulfate. Chemosphere, 2021, 263, 127996.	4.2	22
15	Co/Sm-modified Ti/PbO2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism. Chemosphere, 2021, 268, 128799.	4.2	41
16	Understanding oxygen-deficient La2CuO4-δperovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy. Applied Catalysis B: Environmental, 2021, 284, 119732.	10.8	148
17	Electro-enhanced heterogeneous activation of peroxymonosulfate via acceleration of Fe(III)/Fe(II) redox cycle on Fe-B catalyst. Electrochimica Acta, 2021, 377, 138073.	2.6	37
18	Removal of acetaminophen through direct electron transfer by reactive Mn2O3: Efficiency, mechanism and pathway. Science of the Total Environment, 2021, 769, 144377.	3.9	12

#	Article	IF	CITATIONS
19	Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes. Applied Surface Science, 2021, 549, 149300.	3.1	64
20	La1-x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287, 119955.	10.8	42
21	Activation of peroxymonosulfate by sewage sludge biochar-based catalyst for efficient removal of bisphenol A: Performance and mechanism. Separation and Purification Technology, 2021, 272, 118909.	3.9	50
22	Peroxymonosulfate enhanced photocatalytic degradation of Reactive Black 5 by ZnO-GAC: Key influencing factors, stability and response surface approach. Separation and Purification Technology, 2021, 279, 119754.	3.9	17
23	Application of heterogeneous photo-Fenton process for the mineralization of imidacloprid containing wastewater. Environmental Technology (United Kingdom), 2020, 41, 539-546.	1.2	7
24	Treatment of organosilicon wastewater by UV-based advanced oxidation processes: Performance comparison and fluorescence parallel factor analysis. Chemical Engineering Journal, 2020, 380, 122536.	6.6	29
25	Heterogeneous degradation of organic contaminant by peroxydisulfate catalyzed by activated carbon cloth. Chemosphere, 2020, 238, 124611.	4.2	33
26	Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. Environmental Science & Technology, 2020, 54, 1267-1275.	4.6	452
27	Hydroxyl radical dominated elimination of plasticizers by peroxymonosulfate on metal-free boron: Kinetics and mechanisms. Water Research, 2020, 186, 116361.	5.3	92
28	Enhanced mineralization of Reactive Black 5 by waste iron oxide via photo-Fenton process. Research on Chemical Intermediates, 2020, 46, 4423-4431.	1.3	6
29	Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. Journal of Cleaner Production, 2020, 276, 124246.	4.6	46
30	The removal of azo dye from aqueous solution by oxidation with peroxydisulfate in the presence of granular activated carbon: Performance, mechanism and reusability. Chemosphere, 2020, 259, 127400.	4.2	28
31	Selective removal of phenanthrene for the recovery of sodium dodecyl sulfate by UV-C and UV-C/PDS processes: Performance, mechanism and soil washing recycling. Journal of Hazardous Materials, 2020, 400, 123141.	6.5	24
32	Remediation of Cu-phenanthrene co-contaminated soil by soil washing and subsequent photoelectrochemical process in presence of persulfate. Journal of Hazardous Materials, 2020, 400, 123111.	6.5	28
33	Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel. Chemosphere, 2020, 249, 126176.	4.2	24
34	Oxygen-defective MnO2â^'x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation. Chemical Engineering Journal, 2020, 394, 124458.	6.6	89
35	Hierarchical porous ε-MnO2 from perovskite precursor: Application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388, 124146.	6.6	42
36	Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere, 2020, 254, 126671.	4.2	45

#	Article	IF	CITATIONS
37	Peroxymonosulfate activated with waste battery-based Mn-Fe oxides for pollutant removal: Electron transfer mechanism, selective oxidation and LFER analysis. Chemical Engineering Journal, 2020, 394, 124864.	6.6	90
38	The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis. Environmental Science & Technology, 2020, 54, 6438-6447.	4.6	536
39	Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/β-CDP Composite Hydrogel. Frontiers in Chemistry, 2020, 8, 593730.	1.8	15
40	Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis. Separation and Purification Technology, 2019, 208, 3-11.	3.9	37
41	Phenanthrene degradation using Fe(III)-EDDS photoactivation under simulated solar light: A model for soil washing effluent treatment. Chemosphere, 2019, 236, 124366.	4.2	28
42	Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism. Environmental Science & Technology, 2019, 53, 14595-14603.	4.6	464
43	Degradation of bisphenol A by activating peroxymonosulfate with Mn0.6Zn0.4Fe2O4 fabricated from spent Zn-Mn alkaline batteries. Chemical Engineering Journal, 2019, 364, 541-551.	6.6	128
44	Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chemical Engineering Journal, 2019, 374, 1253-1263.	6.6	139
45	Degradation of clofibric acid by UV, O3 and UV/O3 processes: Performance comparison and degradation pathways. Journal of Hazardous Materials, 2019, 379, 120771.	6.5	44
46	Wood-based biochar as an excellent activator of peroxydisulfate for Acid Orange 7 decolorization. Chemosphere, 2019, 231, 32-40.	4.2	90
47	Persulfate activation by Fe(III) with bioelectricity at acidic and near-neutral pH regimes: Homogeneous versus heterogeneous mechanism. Journal of Hazardous Materials, 2019, 374, 92-100.	6.5	45
48	Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82â^' process and recycling of the surfactant. Chemical Engineering Journal, 2019, 369, 1014-1023.	6.6	75
49	A Ti/IrO2–RuO2–TiO2 anode in the Fered-Fenton process: preparation and performance in the removal of chemical oxygen demand from biochemically treated leachate. Chemical Papers, 2019, 73, 1145-1152.	1.0	2
50	Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction. Chemical Engineering Journal, 2019, 359, 933-943.	6.6	154
51	Mineralization of pentachlorophenol by ferrioxalate-assisted solar photo-Fenton process at mild pH. Chemosphere, 2019, 217, 475-482.	4.2	38
52	Mechanism and kinetics of catalytic ozonation for elimination of organic compounds with spinel-type CuAl2O4 and its precursor. Science of the Total Environment, 2019, 651, 2585-2596.	3.9	82
53	Treatment of landfill leachate with combined biological and chemical processes: changes in the dissolved organic matter and functional groups. Environmental Technology (United Kingdom), 2019, 40, 2225-2231.	1.2	18
	Pilot-scale <i>in situ</i> treatment of landfill leachate using combined coagulation–flocculation,		

54 hydrolysis acidification, SBR and electro-Fenton oxidation. Environmental Technology (United) Tj ETQq0 0 0 rgBT /Qværlock 109Tf 50 57

#	Article	IF	CITATIONS
55	Efficient degradation of clofibric acid by electro-enhanced peroxydisulfate activation with Fe-Cu/SBA-15 catalyst. Applied Catalysis B: Environmental, 2018, 230, 1-10.	10.8	90
56	Degradation of bisphenol A by electro-enhanced heterogeneous activation of peroxydisulfate using Mn-Zn ferrite from spent alkaline Zn-Mn batteries. Chemosphere, 2018, 204, 178-185.	4.2	42
57	Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process. Separation and Purification Technology, 2018, 194, 181-187.	3.9	73
58	Mineralization of <i>N</i> â€Methylâ€2â€Pyrrolidone by UVâ€Assisted Advanced Fenton Process in a Threeâ€Pha Fluidized Bed Reactor. Clean - Soil, Air, Water, 2018, 46, 1800307.	se 0.7	4
59	Performance of artificial sweetener sucralose mineralization via UV/O3 process: Kinetics, toxicity and intermediates. Chemical Engineering Journal, 2018, 353, 626-634.	6.6	53
60	Natural Fe-bearing manganese ore facilitating bioelectro-activation of peroxymonosulfate for bisphenol A oxidation. Chemical Engineering Journal, 2018, 354, 1120-1131.	6.6	59
61	Selective adsorption of phenanthrene dissolved in Tween 80 solution using activated carbon derived from walnut shells. Chemosphere, 2018, 208, 951-959.	4.2	33
62	Comparative study of electrochemical oxidation of herbicide 2,4,5-T: Kinetics, parametric optimization and mineralization pathway. Sustainable Environment Research, 2017, 27, 15-23.	2.1	31
63	A simple non-aqueous route to nano-perovskite mixed oxides with improved catalytic properties. Catalysis Today, 2017, 287, 30-36.	2.2	11
64	The UV/peroxymonosulfate process for the mineralization of artificial sweetener sucralose. Chemical Engineering Journal, 2017, 317, 561-569.	6.6	66
65	Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway. Journal of Hazardous Materials, 2017, 329, 272-279.	6.5	22
66	Oxidation of organic contaminant in a self-driven electro/natural maghemite/peroxydisulfate system: Efficiency and mechanism. Science of the Total Environment, 2017, 599-600, 1181-1190.	3.9	81
67	Hydronium jarosite activation of peroxymonosulfate for the oxidation of organic contaminant in an electrochemical reactor driven by microbial fuel cell. Journal of Hazardous Materials, 2017, 333, 358-368.	6.5	40
68	Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: from a batch study to continuous column operation. Environmental Science and Pollution Research, 2017, 24, 4932-4941.	2.7	20
69	Surfactant-Free Solvothermal Synthesis of 3D Flowerlike Iron Alkoxide (Fe-EG) Micro/Nanostructures: Structure, Formation Mechanism, and Fenton Oxidation of Azo Dyes. Industrial & Engineering Chemistry Research, 2017, 56, 11684-11696.	1.8	25
70	Degradation of Acid Orange 7 using peroxymonosulfate catalyzed by granulated activated carbon and enhanced by electrolysis. Chemosphere, 2017, 188, 139-147.	4.2	86
71	The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis. Science of the Total Environment, 2017, 609, 644-654.	3.9	161
72	The Application of Electro-Fenton Process for the Treatment of Artificial Sweeteners. Handbook of Environmental Chemistry, 2017, , 379-398.	0.2	3

#	Article	IF	CITATIONS
73	Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202, 165-174.	10.8	472
74	Cold incineration of sucralose in aqueous solution by electro-Fenton process. Separation and Purification Technology, 2017, 173, 218-225.	3.9	36
75	Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes. Chemosphere, 2017, 167, 220-227.	4.2	47
76	Electro-enhanced goethite activation of peroxydisulfate for the decolorization of Orange II at neutral pH: Efficiency, stability and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 390-398.	2.7	26
77	Absorption and decomposition of ozone in a three-phase split-rectangular airlift reactor under ultrasonic irradiation. Water Science and Technology, 2016, 73, 1796-1801.	1.2	3
78	Copper-spent activated carbon as a heterogeneous peroxydisulfate catalyst for the degradation of Acid Orange 7 in an electrochemical reactor. Water Science and Technology, 2016, 73, 1802-1808.	1.2	6
79	Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II. Journal of Hazardous Materials, 2016, 313, 209-218.	6.5	70
80	The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. Journal of Hazardous Materials, 2016, 309, 87-96.	6.5	525
81	Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate. Journal of Hazardous Materials, 2016, 319, 51-60.	6.5	41
82	Treatment of landfill leachate using electrochemically assisted UV/chlorine process: Effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis. Chemical Engineering Journal, 2016, 286, 508-516.	6.6	64
83	Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Applied Catalysis B: Environmental, 2016, 185, 22-30.	10.8	144
84	Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Separation and Purification Technology, 2016, 165, 42-52.	3.9	94
85	Degradation of artificial sweetener saccharin in aqueous medium by electrochemically generated hydroxyl radicals. Environmental Science and Pollution Research, 2016, 23, 4442-4453.	2.7	37
86	Selective decolorization of cationic dyes by peroxymonosulfate: non-radical mechanism and effect of chloride. RSC Advances, 2016, 6, 866-871.	1.7	55
87	Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. Journal of Hazardous Materials, 2016, 302, 458-467.	6.5	225
88	Iron modified bentonite: Enhanced adsorption performance for organic pollutant and its regeneration by heterogeneous visible light photo-Fenton process at circumneutral pH. Journal of Hazardous Materials, 2016, 302, 105-113.	6.5	65
89	Removal of tetracycline from aqueous solution by hydrothermal method derived titanate nanotubes. Desalination and Water Treatment, 2016, 57, 19965-19974.	1.0	7
90	Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H 2 O 2. Chemical Engineering Journal, 2016, 285, 392-401.	6.6	104

#	Article	IF	CITATIONS
91	Visible light-assisted heterogeneous Fenton with ZnFe 2 O 4 for the degradation of Orange II in water. Applied Catalysis B: Environmental, 2016, 182, 456-468.	10.8	369
92	Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials, 2015, 287, 32-41.	6.5	135
93	Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system. Chemical Engineering Journal, 2015, 270, 73-79.	6.6	92
94	Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange. Catalysis Today, 2015, 252, 107-112.	2.2	125
95	Sulfurâ€replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies?. Journal of Chemical Technology and Biotechnology, 2015, 90, 775-779.	1.6	80
96	Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Applied Catalysis B: Environmental, 2015, 178, 29-36.	10.8	164
97	Degradation of Crystal Violet by catalytic ozonation using Fe/activated carbon catalyst. Separation and Purification Technology, 2015, 147, 179-185.	3.9	121
98	Degradation of the azo dye Orange G in a fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst. RSC Advances, 2015, 5, 45276-45283.	1.7	48
99	Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe ₃ O ₄ : Mechanism, Stability, and Effects of pH and Bicarbonate Ions. Environmental Science & Technology, 2015, 49, 6838-6845.	4.6	619
100	Mineralization of bisphenol A by photo-Fenton-like process using a waste iron oxide catalyst in a three-phase fluidized bed reactor. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 68-73.	2.7	31
101	Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe2+/persulfate process. Environmental Science and Pollution Research, 2015, 22, 11606-11616.	2.7	25
102	Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. Environmental Science & Technology, 2015, 49, 12187-12196.	4.6	167
103	Removal of ammonium from municipal landfill leachate using natural zeolites. Environmental Technology (United Kingdom), 2015, 36, 2919-2923.	1.2	27
104	Degradation of Acid Orange 7 at neutral pH by heterogeneous activation of peroxydisulfate using Co-GAC catalyst under UV irradiation. Desalination and Water Treatment, 2015, 54, 3689-3695.	1.0	5
105	Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. Journal of Hazardous Materials, 2015, 283, 70-79.	6.5	456
106	DECOLORIZATION OF ORANGE II BY HETEROGENEOUS FENTON PROCESS USING GOETHITE AS CATALYST. Environmental Engineering and Management Journal, 2015, 14, 737-744.	0.2	3
107	Ultrasound-assisted removal of tetracycline from aqueous solution by mesoporous alumina. Water Science and Technology, 2014, 69, 819-824.	1.2	7
108	Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process. Chemical Engineering Journal, 2014, 250, 76-82.	6.6	125

#	Article	IF	CITATIONS
109	Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Separation and Purification Technology, 2014, 122, 41-46.	3.9	185
110	Landfill leachate treatment using the sequencing batch biofilm reactor method integrated with the electro-Fenton process. Chemical Papers, 2014, 68, .	1.0	17
111	Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water. Journal of Environmental Sciences, 2014, 26, 1267-1273.	3.2	71
112	Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Applied Catalysis B: Environmental, 2014, 144, 739-749.	10.8	95
113	Electro-Fenton removal of Orange II in a divided cell: Reaction mechanism, degradation pathway and toxicity evolution. Separation and Purification Technology, 2014, 122, 533-540.	3.9	97
114	Degradation of Toluene by a Selective Ferrous Ion Activated Persulfate Oxidation Process. Industrial & Engineering Chemistry Research, 2014, 53, 1033-1039.	1.8	109
115	Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. Water Research, 2014, 66, 473-485.	5.3	183
116	Factorial design analysis for COD removal from landfill leachate by photoassisted Fered-Fenton process. Environmental Science and Pollution Research, 2014, 21, 8595-8602.	2.7	16
117	Degradation of clofibric acid in aqueous solution by an EC/Fe3+/PMS process. Chemical Engineering Journal, 2014, 244, 514-521.	6.6	164
118	Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process. Journal of Hazardous Materials, 2014, 276, 182-191.	6.5	154
119	Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials. Applied Catalysis B: Environmental, 2013, 140-141, 92-97.	10.8	304
120	Surfactant flushing remediation of toluene contaminated soil: Optimization with response surface methodology and surfactant recovery by selective oxidation with sulfate radicals. Separation and Purification Technology, 2013, 118, 612-619.	3.9	67
121	Degradation of Orange II by UV-Assisted Advanced Fenton Process: Response Surface Approach, Degradation Pathway, and Biodegradability. Industrial & Engineering Chemistry Research, 2013, 52, 15560-15567.	1.8	71
122	Ultrasound-enhanced magnetite catalytic ozonation of tetracycline in water. Chemical Engineering Journal, 2013, 229, 577-584.	6.6	94
123	Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process. Separation and Purification Technology, 2013, 117, 18-23.	3.9	141
124	Removal of sulfamethoxazole from aqueous solution by sono-ozonation in the presence of a magnetic catalyst. Separation and Purification Technology, 2013, 117, 46-52.	3.9	59
125	Design of nanocrystalline mixed oxides with improved oxygen mobility: a simple non-aqueous route to nano-LaFeO3 and the consequences on the catalytic oxidation performances. Chemical Communications, 2013, 49, 4923.	2.2	25
126	Ionic Liquidâ€Mediated αâ€Fe ₂ O ₃ Shapeâ€Controlled Nanocrystalâ€Supported Noble Metals: Highly Active Materials for CO Oxidation. ChemCatChem, 2013, 5, 1978-1988.	1.8	13

#	Article	IF	CITATIONS
127	Degradation of Orange II in aqueous solution by a novel electro/Fe3O4 process. Water Science and Technology, 2013, 68, 2441-2447.	1.2	9
128	Decolorization of Crystal Violet by ultrasound/heterogeneous Fenton process. Water Science and Technology, 2013, 68, 2515-2520.	1.2	24
129	Statistical Experiment Design Approach for the Treatment of Landfill Leachate by Photoelectro-Fenton Process. Journal of Environmental Engineering, ASCE, 2012, 138, 278-285.	0.7	25
130	Decolorization of CI Reactive Black 8 by electrochemical process with/without ultrasonic irradiation. Desalination and Water Treatment, 2012, 44, 36-43.	1.0	22
131	Reduction and Immobilization of Potassium Permanganate on Iron Oxide Catalyst by Fluidized-Bed Crystallization Technology. Applied Sciences (Switzerland), 2012, 2, 166-174.	1.3	9
132	Oxidation and coagulation removal of COD from landfill leachate by Fered–Fenton process. Chemical Engineering Journal, 2012, 210, 188-194.	6.6	62
133	Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor. Journal of Hazardous Materials, 2012, 241-242, 259-266.	6.5	66
134	Treatment of landfill leachate by internal microelectrolysis and sequent Fenton process. Desalination and Water Treatment, 2012, 47, 243-248.	1.0	18
135	Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 2012, 87, 614-620.	4.2	249
136	Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction. Applied Catalysis B: Environmental, 2012, 121-122, 123-134.	10.8	98
137	Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Separation and Purification Technology, 2012, 84, 147-152.	3.9	233
138	Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Separation and Purification Technology, 2012, 84, 138-146.	3.9	89
139	Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process. Journal of Hazardous Materials, 2012, 215-216, 138-145.	6.5	173
140	Application of experimental design methodology to the decolorization of Orange II using low iron concentration of photoelectro-Fenton process. Water Science and Technology, 2011, 63, 1373-1380.	1.2	14
141	OXIDATION OF C.I. ACID ORANGE 7 WITH OZONE AND HYDROGEN PEROXIDE IN A HOLLOW FIBER MEMBRANE REACTOR. Chemical Engineering Communications, 2011, 198, 1530-1544.	1.5	5
142	Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor. Catalysis Today, 2011, 175, 283-292.	2.2	78
143	Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation. Journal of Chemical Technology and Biotechnology, 2011, 86, 970-977.	1.6	55
144	Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology. Journal of Hazardous Materials, 2011, 188, 261-268.	6.5	107

#	Article	IF	CITATIONS
145	Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. Journal of Hazardous Materials, 2011, 192, 35-43.	6.5	150
146	Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process. Separation and Purification Technology, 2011, 80, 163-171.	3.9	139
147	Selective Synthesis of Fe2O3 and Fe3O4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires. Nanoscale Research Letters, 2010, 5, 1295-1300.	3.1	105
148	Electrochemical oxidation of Crystal Violet in the presence of hydrogen peroxide. Journal of Chemical Technology and Biotechnology, 2010, 85, 1436-1444.	1.6	20
149	Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor. Waste Management, 2010, 30, 2096-2102.	3.7	102
150	Evaluation of heterogeneous photo-Fenton oxidation of Orange II using response surface methodology. Water Science and Technology, 2010, 62, 1320-1326.	1.2	22
151	Degradation of tetracycline in aqueous medium by electrochemical method. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 568-573.	0.8	70
152	Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process. Journal of Hazardous Materials, 2009, 172, 654-660.	6.5	149
153	Degradation of C.I. Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry, 2009, 16, 325-330.	3.8	121
154	Multivariate approach to the Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 2009, 161, 1306-1312.	6.5	90
155	Properties of iron-based mesoporous silica for the CWPO of phenol: A comparison between impregnation and co-condensation routes. Journal of Hazardous Materials, 2009, 172, 1175-1184.	6.5	63
156	DECOMPOSITION OF 4-NITROPHENOL BY OZONATION IN A HOLLOW FIBER MEMBRANE REACTOR. Chemical Engineering Communications, 2009, 197, 377-386.	1.5	16
157	Degradation of C.I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor. Chemical Engineering Journal, 2008, 138, 231-238.	6.6	56
158	Absorption kinetics of ozone in water with ultrasonic radiation. Ultrasonics Sonochemistry, 2007, 14, 552-556.	3.8	41
159	Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 2007, 145, 227-232.	6.5	225
160	Decolorisation and mineralisation of CI Reactive Black 8 by the Fenton and ultrasound/Fenton methods. Coloration Technology, 2007, 123, 101-105.	0.7	37
161	Decolorisation of CI Reactive Black 8 by zero-valent iron powder with/without ultrasonic irradiation. Coloration Technology, 2007, 123, 203-208.	0.7	28
162	Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, 2006, 135, 106-111.	6.5	257

#	Article	IF	CITATIONS
163	Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor. Journal of Hazardous Materials, 2006, 136, 618-623.	6.5	93
164	Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. Journal of Hazardous Materials, 2006, 138, 53-59.	6.5	101
165	The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments, 2005, 65, 39-43.	2.0	119
166	In situ ozonation of anthracene in unsaturated porous media. Journal of Hazardous Materials, 2005, 120, 143-148.	6.5	32
167	Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 2005, 125, 166-174.	6.5	342