Xingce Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596661/publications.pdf

Version: 2024-02-01

		516710	580821
26	645	16	25
papers	citations	h-index	g-index
26	26	26	683
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Research, 2022, 15, 637-643.	10.4	16
2	Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips. Nano Research, $2022, 15, 3794-3803$.	10.4	14
3	Verification and Analysis of Single-Molecule SERS Events via Polarization-Selective Raman Measurement. Analytical Chemistry, 2022, 94, 1046-1051.	6.5	4
4	Monitoring substrate-induced electron–phonon coupling at interfaces of 2D organic/inorganic van der Waals heterostructures with ⟨i⟩in situ⟨/i⟩ Raman spectroscopy. Applied Physics Letters, 2022, 120, 181602.	3.3	3
5	Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horizons, 2021, 6, 186-191.	8.0	33
6	Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis. Materials Horizons, 2021, 8, 3315-3323.	12.2	14
7	The origin of ultrasensitive SERS sensing beyond plasmonics. Frontiers of Physics, 2021, 16, 1.	5.0	53
8	Stability of the structure and redox state of ferricytochrome c in the desolvation process. Vibrational Spectroscopy, 2021, 113, 103220.	2.2	0
9	Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51618-51627.	8.0	26
10	Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy. Nanotechnology, 2020, 31, 055502.	2.6	30
11	Plasmonic metal carbide SERS chips. Journal of Materials Chemistry C, 2020, 8, 14523-14530.	5.5	14
12	Flexible Surface-Enhanced Raman Scattering Chip: A Universal Platform for Real-Time Interfacial Molecular Analysis with Femtomolar Sensitivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54174-54180.	8.0	27
13	Hotspots on the Move: Active Molecular Enrichment by Hierarchically Structured Micromotors for Ultrasensitive SERS Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28783-28791.	8.0	42
14	Improving the performance of light-emitting diodes via plasmonic-based strategies. Journal of Applied Physics, 2020, 127, .	2.5	30
15	Planar transition metal oxides SERS chips: a general strategy. Journal of Materials Chemistry C, 2019, 7, 11134-11141.	5.5	18
16	High SERS Sensitivity Enabled by Synergistically Enhanced Photoinduced Charge Transfer in Amorphous Nonstoichiometric Semiconducting Films. Advanced Materials Interfaces, 2019, 6, 1901133.	3.7	42
17	W ₁₈ O ₄₉ /Monolayer MoS ₂ Heterojunction-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2019, 10, 4038-4044.	4.6	46
18	Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami. Nature Communications, 2019, 10, 5019.	12.8	28

#	Article	IF	CITATIONS
19	Ultrasonic exfoliated ReS ₂ nanosheets: fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO ₂ nanoparticles under sunlight. Nanotechnology, 2019, 30, 184001.	2.6	24
20	Plasmon-coupled charge transfer in WO _{3â^'x} semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms. Physical Chemistry Chemical Physics, 2019, 21, 2611-2618.	2.8	26
21	Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017, 28, 105301.	2.6	60
22	Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Applied Materials & Shadow Mask. ACS Applied	8.0	50
23	Self-assembled bundled TiO2nanowire arrays encapsulated with indium tin oxide for broadband absorption in plasmonic photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 27059-27064.	2.8	5
24	Assembly of gold nanoparticles into aluminum nanobowl array. Scientific Reports, 2017, 7, 2322.	3.3	33
25	Exploring indium tin oxide capped titanium dioxide nanolace arrays for plasmonic photocatalysis. RSC Advances, 2016, 6, 12611-12615.	3.6	5
26	Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes. International Journal of Behavioral and Consultation Therapy, 2016, , 249-274.	0.4	2