
Guofeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/359656/publications.pdf Version: 2024-02-01

GLIOFENC WANC

#	Article	IF	CITATIONS
1	Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket. Sensors, 2015, 15, 21518-21536.	3.8	103
2	Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Landmarks. Sensors, 2016, 16, 1427.	3.8	36
3	Modeling and Identification for Vector Propulsion of an Unmanned Surface Vehicle: Three Degrees of Freedom Model and Response Model. Sensors, 2018, 18, 1889.	3.8	35
4	Adaptive course control based on trajectory linearization control for unmanned surface vehicle with unmodeled dynamics and input saturation. Neurocomputing, 2019, 330, 1-10.	5.9	33
5	A Formation Autonomous Navigation System for Unmanned Surface Vehicles With Distributed Control Strategy. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2834-2845.	8.0	32
6	Adaptive Backstepping Sliding Mode Tracking Control for Underactuated Unmanned Surface Vehicle With Disturbances and Input Saturation. IEEE Access, 2021, 9, 1304-1312.	4.2	30
7	A Formation Collision Avoidance System for Unmanned Surface Vehicles With Leader-Follower Structure. IEEE Access, 2019, 7, 24691-24702.	4.2	29
8	Adaptive Trajectory Tracking Control for Underactuated Unmanned Surface Vehicle Subject to Unknown Dynamics and Time-Varing Disturbances. Applied Sciences (Switzerland), 2018, 8, 547.	2.5	27
9	Modeling and Identification of Podded Propulsion Unmanned Surface Vehicle and Its Course Control Research. Mathematical Problems in Engineering, 2017, 2017, 1-13.	1.1	26
10	Course keeping Control Based on Integrated Nonlinear Feedback for a USV with Pod-like Propulsion. Journal of Navigation, 2018, 71, 878-898.	1.7	25
11	Collision Avoidance of Podded Propulsion Unmanned Surface Vehicle With COLREGs Compliance and Its Modeling and Identification. IEEE Access, 2018, 6, 55473-55491.	4.2	23
12	Path Following of Underactuated Unmanned Surface Vehicle Based on Trajectory Linearization Control with Input Saturation and External Disturbances. International Journal of Control, Automation and Systems, 2020, 18, 2108-2119.	2.7	22
13	An Automatic Navigation System for Unmanned Surface Vehicles in Realistic Sea Environments. Applied Sciences (Switzerland), 2018, 8, 193.	2.5	21
14	Course control of USV based on fuzzy adaptive guide control. , 2016, , .		18
15	Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones. Sensors, 2016, 16, 677.	3.8	17
16	A Time-Varying Lookahead Distance of ILOS Path Following for Unmanned Surface Vehicle. Journal of Electrical Engineering and Technology, 2020, 15, 2267-2278.	2.0	17
17	Trajectory tracking control for underactuated unmanned surface vehicle subject to uncertain dynamics and input saturation. Neural Computing and Applications, 2021, 33, 12777-12789.	5.6	17
18	Path following for podded propulsion unmanned surface vehicle: Theory, simulation and experiment. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 911-923.	1.4	16

#	Article	IF	CITATIONS
19	Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances. Mathematical Problems in Engineering, 2018, 2018, 1-12.	1.1	16
20	Model Identification and Trajectory Tracking Control for Vector Propulsion Unmanned Surface Vehicles. Electronics (Switzerland), 2020, 9, 22.	3.1	16
21	Radar Target Tracking for Unmanned Surface Vehicle Based on Square Root Sage–Husa Adaptive Robust Kalman Filter. Sensors, 2022, 22, 2924.	3.8	16
22	Robust Adaptive Trajectory Linearization Control for Tracking Control of Surface Vessels With Modeling Uncertainties Under Input Saturation. IEEE Access, 2019, 7, 5057-5070.	4.2	15
23	A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs. Sensors, 2022, 22, 2099.	3.8	15
24	Robust pathâ€following control based on trajectory linearization control for unmanned surface vehicle with uncertainty of model and actuator saturation. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 1681-1690.	1.4	14
25	Robust adaptive neural network control for switched reluctance motor drives. Automatika, 2018, 59, 24-34.	2.0	12
26	Adaptive trajectory tracking control of vector propulsion unmanned surface vehicle with disturbances and input saturation. Nonlinear Dynamics, 2021, 106, 2277-2291.	5.2	12
27	Adaptive Fast Non-Singular Terminal Sliding Mode Path Following Control for an Underactuated Unmanned Surface Vehicle with Uncertainties and Unknown Disturbances. Sensors, 2021, 21, 7454.	3.8	12
28	Trajectory linearization-based robust course keeping control of unmanned surface vehicle with disturbances and input saturation. ISA Transactions, 2021, 112, 168-175.	5.7	11
29	An autonomous dynamic collision avoidance control method for unmanned surface vehicle in unknown ocean environment. International Journal of Advanced Robotic Systems, 2019, 16, 172988141983158.	2.1	9
30	A Robotic grinding station based on an industrial manipulator and vision system. PLoS ONE, 2021, 16, e0248993.	2.5	9
31	Adaptive RBF neural network control for unmanned surface vessel course tracking. , 2016, , .		8
32	USV model identification and course control. , 2016, , .		8
33	A Novel Method for Modeling the Electromagnetic Characteristics of Switched Reluctance Motors. Applied Sciences (Switzerland), 2018, 8, 537.	2.5	8
34	A Novel Method to Obtain the Flux-Linkage Characteristics of Switched Reluctance Motors. IEEE Transactions on Magnetics, 2021, 57, 1-11.	2.1	8
35	A self-tuning fuzzy PID speed control strategy for switched reluctance motor. , 2016, , .		7
36	Direct adaptive neural network control for switched reluctance motors with input saturation. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 1804-1814.	1.4	7

#	Article	IF	CITATIONS
37	6DOF Object Positioning and Grasping Approach for Industrial Robots Based on Boundary Point Cloud Features. Mathematical Problems in Engineering, 2020, 2020, 1-12.	1.1	7
38	Robust Path Following Control of Underactuated Unmanned Surface Vehicle With Disturbances and Input Saturation. IEEE Access, 2021, 9, 46106-46116.	4.2	7
39	Collision avoidance guidance and control scheme for vector propulsion unmanned surface vehicle with disturbance. Applied Ocean Research, 2021, 115, 102799.	4.1	7
40	Collision Avoidance Controller for Unmanned Surface Vehicle Based on Improved Cuckoo Search Algorithm. Applied Sciences (Switzerland), 2021, 11, 9741.	2.5	7
41	Adaptive RBF neural network controller design for SRM drives. , 2016, , .		6
42	Trajectory Tracking Control for Unmanned Surface Vehicle Subject to Unmeasurable Disturbance and Input Saturation. IEEE Access, 2020, 8, 191278-191285.	4.2	6
43	Design of a heterogeneous marsupial robotic system composed of an USV and an UAV. , 2016, , .		5
44	Britain as a protector, a mediator or anÂonlooker?. Journal of Language and Politics, 2022, 21, 17-36.	1.4	4
45	An Novel Model Switching Course Control for Unmanned Surface Vehicle With Modeling Error and External Disturbance. IEEE Access, 2021, 9, 84712-84723.	4.2	4
46	An Improved Vector Control Strategy for Switched Reluctance Motor Drive Based on the Two-Degree-of-Freedom Internal Model Control. Applied Sciences (Switzerland), 2022, 12, 5407.	2.5	4
47	Disturbance Observer based Nonlinear Control for a Quadrotor Trajectory Tracking. , 2019, , .		3
48	Fast Finite-Time Path-Following Control of Unmanned Surface Vehicles with Sideslip Compensation and Time-Varying Disturbances. Journal of Marine Science and Engineering, 2022, 10, 960.	2.6	3
49	Sliding Mode Control Design for a Class of SISO Systems with Uncertain Sliding Surface. Mathematical Problems in Engineering, 2013, 2013, 1-7.	1.1	2
50	Parallel Adaptive Artificial Fish Swarm Algorithm Based on Differential Evolution. , 2016, , .		2
51	Real-time Collision Avoidance Control for Unmanned Surface Vehicle Based on Velocity Resolution Method. , 2019, , .		2
52	Course Controller Design for Unmanned Surface Vehicle Based on Trajectory Linearization Control with Input Saturation. , 2019, , .		2
53	Fast Collision Avoidance Method Based on Velocity Resolution for Unmanned Surface Vehicle. , 2019, ,		2
54	A Path Planning Method for Autonomous Ships Based on SVM. , 2020, , .		2

#	Article	IF	CITATIONS
55	An introduction to the special issue on "Language, politics and media: The Hong Kong protests― Journal of Language and Politics, 0, , .	1.4	2
56	Path Following Control Strategy for Underactuated Unmanned Surface Vehicle Subject to Multiple Constraints. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	1.4	2
57	Development of a distributed bearing health monitoring and assessing system. , 0, , .		1
58	Fault diagnosis based on second-order Taylor series dynamic prediction for autonomous underwater vehicle sensor. , 2013, , .		1
59	Dynamic collision avoidance for car-like mobile robot based on nonlinear trajectory tracking control. , 2017, , .		1
60	Podded propulsion unmanned surface vehicle model identification based on field experiments. , 2017, , .		1
61	A performance assessment of model predictive direct power control and model predictive direct current control for switched reluctance motor drive systems. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 632-641.	1.4	1
62	3D concave defect measurement system of the cryogenic insulated cylinder based on linear structured light. , 2018, , .		1
63	A New Modeling Method for Switched Reluctance Motor Based on the Fuzzy Logic System. , 2018, , .		1
64	Variable Bandwidth Adaptive Course Keeping Control Strategy for Unmanned Surface Vehicle. Energies, 2020, 13, 5091.	3.1	1
65	Adaptive second-order global terminal sliding mode direct torque control of switched reluctance motor based on RBFNN. , 2020, , .		1
66	Dielectric lens with stacked coneâ€shaped cavity for broadside radiation enhancement of circularly polarised patch antenna. IET Microwaves, Antennas and Propagation, 2020, 14, 1610-1618.	1.4	1
67	Bearing fault diagnosis based on rough set. , 2010, , .		0
68	On-line bearing fault diagnosis based on signal analysis and rough set. , 2010, , .		0
69	Fault diagnosis based on grey correlation analysis for autonomous underwater vehicle sensor. , 2013, , .		0
70	An integrated control simulation system of ship motion and main propulsion. , 2014, , .		0
71	New robust control design of a class of dual-actuator systems. , 2016, , .		0
72	Local sliding mode control design for a class of second-order systems with friction. , 2017, , .		0

#	Article	IF	CITATIONS
73	A novel strategy for obtaining nonlinear flux linkage model of switched reluctance motor. , 2018, , .		О
74	A Novel Heading Control Strategy for Unmanned Surface Vehicle. , 2021, , .		0
75	Trajectory Tracking for Underactuated Unmanned Surface Vessel Based on Limit Segmentation. , 2021, ,		0
76	Unipolar sinusoidal current excited switched reluctance motor control based on a 3D space vector modulation. IET Electric Power Applications, 0, , .	1.8	0