Yadong Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596497/publications.pdf

Version: 2024-02-01

430874 289244 1,787 41 18 40 citations h-index g-index papers 41 41 41 2777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A hierarchical CoP@NiCo-LDH nanoarray as an efficient and flexible catalyst electrode for the alkaline oxygen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 391-395.	4.9	14
2	Construction of interfacial engineering on CoP nanowire arrays with CoFe-LDH nanosheets for enhanced oxygen evolution reaction. FlatChem, 2021, 26, 100225.	5.6	25
3	Structural and Interfacial Engineering of Ni ₂ P/Fe ₃ O ₄ Porous Nanosheet Arrays for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 14786-14792.	4.0	6
4	Enhanced activity promoted by amorphous metal oxyhydroxides on CeO2 for alkaline oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 604, 719-726.	9.4	7
5	Rational interface engineering of Cu ₂ S–CoO _x /CF enhances oxygen evolution reaction activity. Chemical Communications, 2020, 56, 13571-13574.	4.1	16
6	Ultrathin Mn Doped Niâ€MOF Nanosheet Array for Highly Capacitive and Stable Asymmetric Supercapacitor. Chemistry - A European Journal, 2020, 26, 17149-17155.	3.3	60
7	A hierarchical CoMoO ₄ nanoparticle decorated nanoplate array as an electrocatalyst toward improved alkaline oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 1595-1599.	4.9	14
8	Pyrolysis of a self-supported dodecyl sulfate anion-intercalated Co(OH) ₂ nanosheet with enlarged amorphous phase content towards enhanced activity for alkaline water oxidation. Chemical Communications, 2019, 55, 11211-11214.	4.1	4
9	Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 8771-8776.	10.3	112
10	A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chemical Communications, 2018, 54, 10499-10502.	4.1	192
11	Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chemical Communications, 2018, 54, 9234-9237.	4.1	65
12	NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Chemistry - A European Journal, 2017, 23, 4435-4441.	3.3	134
13	Bimetallic Nickelâ€Substituted Cobaltâ€Borate Nanowire Array: An Earthâ€Abundant Water Oxidation Electrocatalyst with Superior Activity and Durability at Near Neutral pH. Small, 2017, 13, 1700394.	10.0	95
14	Facile synthesis of a α-MoO ₃ nanoplate/TiO ₂ nanotube composite for high electrochemical performance. RSC Advances, 2017, 7, 22983-22989.	3.6	17
15	Highly efficient and durable water oxidation in a near-neutral carbonate electrolyte electrocatalyzed by a core–shell structured NiO@Ni–Ci nanosheet array. Sustainable Energy and Fuels, 2017, 1, 1287-1291.	4.9	27
16	In situ surface derivation of an Fe–Co–Bi layer on an Fe-doped Co ₃ O ₄ nanoarray for efficient water oxidation electrocatalysis under near-neutral conditions. Journal of Materials Chemistry A, 2017, 5, 6388-6392.	10.3	68
17	Cobalt carbonate hydroxide hydrate nanowires array: a threeâ€dimensional catalyst electrode for effective water oxidation. Micro and Nano Letters, 2017, 12, 264-266.	1.3	19
18	A nickel–borate–phosphate nanoarray for efficient and durable water oxidation under benign conditions. Inorganic Chemistry Frontiers, 2017, 4, 840-844.	6.0	46

#	Article	IF	CITATIONS
19	Homologous Catalysts Based on Feâ€Doped CoP Nanoarrays for Highâ€Performance Full Water Splitting under Benign Conditions. ChemSusChem, 2017, 10, 3188-3192.	6.8	58
20	A self-supported NiMoS ₄ nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 16585-16589.	10.3	114
21	Selfâ€Templating Construction of Hollow Amorphous CoMoS ₄ Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH. Chemistry - A European Journal, 2017, 23, 12718-12723.	3.3	48
22	Anion-exchange synthesis of a nanoporous crystalline CoB ₂ O ₄ nanowire array for high-performance water oxidation electrocatalysis in borate solution. Nanoscale, 2017, 9, 12343-12347.	5. 6	21
23	Ni3S2@polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications. Journal of Materials Science, 2017, 52, 3642-3656.	3.7	51
24	Growth process and morphology control of SBA-15 particles: synergistic effects of tetraethoxysilane and Pluronic-123 concentrations. MRS Communications, 2016, 6, 449-454.	1.8	7
25	Construction of a Hierarchical NiCo ₂ S ₄ @PPy Coreâ€"Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor. ACS Applied Materials & amp; Interfaces, 2016, 8, 24525-24535.	8.0	408
26	Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique. Colloids and Surfaces B: Biointerfaces, 2016, 141, 537-545.	5.0	22
27	Fabrication of tungsten carbide nanoparticles from refluxing derived precursor. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 231-234.	1.0	2
28	An Efficient and Recyclable Urchin-Like Yolk–Shell Fe3O4@SiO2@Co3O4 Catalyst for Photocatalytic Water Oxidation. Catalysis Letters, 2015, 145, 1067-1071.	2.6	7
29	Glucose oxidase adsorption performance of carbonaceous mesocellular foams prepared with different carbon sources. Journal of Bioscience and Bioengineering, 2015, 120, 9-16.	2.2	5
30	A facile approach to synthesize rose-like ZnO/reduced graphene oxide composite: fluorescence and photocatalytic properties. Journal of Materials Science, 2014, 49, 5658-5666.	3.7	18
31	Inhibiting Effects of a Cyclic Peptide CNGRC on Proliferation and Migration of Tumor Cells In Vitro. International Journal of Peptide Research and Therapeutics, 2013, 19, 163-173.	1.9	3
32	A Facile Synthesis of Monodispersed Carbon-encapsulated Copper Nanoparticles with Excellent Oxidation Resistance from a Refluxing-derived Precursor. Chemistry Letters, 2013, 42, 627-629.	1.3	3
33	Rapid and High-capacity Adsorption of Glucose Oxidase on Amine-functionalized Mesoporous Silica SBA-15 Platelets. Chemistry Letters, 2012, 41, 1512-1514.	1.3	4
34	An Improved Method to Increase the Concentration of Graphene in Organic Solvent. Chemistry Letters, 2012, 41, 747-749.	1.3	11
35	In vitro bioactivity and cytocompatibility of tricalcium silicate. Bulletin of Materials Science, 2011, 34, 1151-1155.	1.7	5
36	Synthesis and characterization of vanadium carbide nanoparticles by thermal refluxing-derived precursors. Journal of Materials Science, 2011, 46, 3693-3697.	3.7	15

YADONG YAO

#	Article	IF	CITATIONS
37	Preparation of titanium nitride nanoparticles from a novel refluxing derived precursor. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 429-433.	1.0	8
38	Preparation, structure and properties of Mn-doped ZnO rod arrays. CrystEngComm, 2010, 12, 192-198.	2.6	39
39	Preparation and properties of red phosphor CaO: Eu3+. Journal of Materials Science, 2009, 44, 2388-2392.	3.7	15
40	Antibacterial properties of TiO2 ceramic pellets prepared using nano TiO2 powder. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 337-342.	1.0	2
41	Degradation of residual formaldehyde in fabric by photo-catalysis. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 147-150.	1.0	0