Pedro Ollero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596445/publications.pdf Version: 2024-02-01

DEDDO OLIEDO

#	Article	IF	CITATIONS
1	Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air. Fuel Processing Technology, 2009, 90, 677-685.	3.7	167
2	The CO2 gasification kinetics of olive residue. Biomass and Bioenergy, 2003, 24, 151-161.	2.9	156
3	Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 2002, 81, 1989-2000.	3.4	153
4	Pilot-Plant Technical Assessment of Wet Flue Gas Desulfurization Using Limestone. Industrial & Engineering Chemistry Research, 2006, 45, 1466-1477.	1.8	147
5	Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chemical Engineering Journal, 2013, 228, 1223-1233.	6.6	117
6	Optimization of char and tar conversion in fluidized bed biomass gasifiers. Fuel, 2013, 103, 42-52.	3.4	99
7	Diffusional Effects in CO2Gasification Experiments with Single Biomass Char Particles. 1. Experimental Investigation. Energy & Fuels, 2006, 20, 2202-2210.	2.5	95
8	Airâ^'Steam Gasification of Biomass in a Fluidized Bed under Simulated Autothermal and Adiabatic Conditions. Industrial & Engineering Chemistry Research, 2008, 47, 5957-5965.	1.8	81
9	Gasification of wastes in a pilot fluidized bed gasifier. Fuel Processing Technology, 2014, 121, 63-69.	3.7	79
10	Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel, 2013, 105, 739-751.	3.4	76
11	The drying of alpeorujo, a waste product of the olive oil mill industry. Journal of Food Engineering, 1999, 41, 229-234.	2.7	70
12	Technoeconomic assessment of ethanol production via thermochemical conversion of biomass by entrained flow gasification. Energy, 2011, 36, 4097-4108.	4.5	69
13	Pilot-Plant Gasification of Olive Stone: a Technical Assessment. Energy & Fuels, 2005, 19, 598-605.	2.5	68
14	Thermodynamic study of the supercritical water reforming of glycerol. International Journal of Hydrogen Energy, 2011, 36, 8994-9013.	3.8	67
15	Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Processing Technology, 2013, 114, 35-48.	3.7	62
16	Gasification of biomass and waste in a staged fluidized bed gasifier: Modeling and comparison with one-stage units. Fuel, 2012, 97, 730-740.	3.4	61
17	Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. Journal of Cleaner Production, 2017, 142, 2887-2900.	4.6	59
18	Thermochemical biorefinery based on dimethyl ether as intermediate: Technoeconomic assessment. Applied Energy, 2013, 102, 950-961.	5.1	56

#	Article	IF	CITATIONS
19	Gasification of char from dried sewage sludge in fluidized bed: Reaction rate in mixtures of CO2 and H2O. Fuel, 2013, 105, 764-768.	3.4	49
20	Experimental study of the supercritical water reforming of glycerol without the addition of a catalyst. Energy, 2013, 56, 193-206.	4.5	46
21	Diffusional Effects in CO2Gasification Experiments with Single Biomass Char Particles. 2. Theoretical Predictions. Energy & Fuels, 2006, 20, 2211-2222.	2.5	45
22	Biogas desulfurization by adsorption on thermally treated sewage-sludge. Separation and Purification Technology, 2014, 123, 200-213.	3.9	45
23	The influence of temperature and steam on the yields of tar and light hydrocarbon compounds during devolatilization of dried sewage sludge in a fluidized bed. Fuel, 2013, 108, 341-350.	3.4	44
24	Hydrogen production from supercritical water reforming of glycerol over Ni/Al2O3–SiO2 catalyst. Energy, 2015, 84, 634-642.	4.5	43
25	An approximate method for solving gas–solid non-catalytic reactions. Chemical Engineering Science, 2006, 61, 3725-3735.	1.9	42
26	Catalytic Seawater Flue Gas Desulfurization Process:Â An Experimental Pilot Plant Study. Environmental Science & Technology, 2007, 41, 7114-7119.	4.6	42
27	An energy and exergy analysis of the supercritical water reforming of glycerol for power production. International Journal of Hydrogen Energy, 2012, 37, 209-226.	3.8	42
28	Automation of an olive waste industrial rotary dryer. Journal of Food Engineering, 2005, 68, 239-247.	2.7	40
29	Optimization of power and hydrogen production from glycerol by supercritical water reforming. Chemical Engineering Journal, 2013, 218, 309-318.	6.6	40
30	Supercritical water reforming of model compounds of bio-oil aqueous phase: Acetic acid, acetol, butanol and glucose. Chemical Engineering Journal, 2016, 298, 243-258.	6.6	39
31	Modeling and simulation of the adsorption of biogas hydrogen sulfide on treated sewage–sludge. Chemical Engineering Journal, 2014, 253, 305-315.	6.6	37
32	Tar Reduction by Primary Measures in an Autothermal Air-Blown Fluidized Bed Biomass Gasifier. Industrial & Engineering Chemistry Research, 2010, 49, 11294-11301.	1.8	34
33	Technoeconomic assessment of lignocellulosic ethanol production via DME (dimethyl ether) hydrocarbonylation. Energy, 2012, 44, 891-901.	4.5	34
34	Thermodynamic analysis of the autothermal reforming of glycerol using supercritical water. International Journal of Hydrogen Energy, 2011, 36, 12186-12199.	3.8	32
35	Potential routes for thermochemical biorefineries. Biofuels, Bioproducts and Biorefining, 2013, 7, 551-572.	1.9	32
36	A Kinetic Study of the Oxidation of S(IV) in Seawater. Environmental Science & Technology, 2001, 35, 2792-2796.	4.6	31

#	Article	IF	CITATIONS
37	Use of Biomass Gasification Fly Ash in Lightweight Plasterboard. Energy & Fuels, 2007, 21, 361-367.	2.5	31
38	Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water. Energy, 2012, 42, 192-203.	4.5	28
39	Supercritical water reforming of glycerol: Performance of Ru and Ni catalysts on Al2O3 support. Energy, 2016, 96, 561-568.	4.5	27
40	Integral energy valorization of municipal solid waste reject fraction to biofuels. Energy Conversion and Management, 2019, 180, 1167-1184.	4.4	27
41	Catalytic Oxidation of S(IV) in Seawater Slurries of Activated Carbon. Environmental Science & Technology, 2005, 39, 5031-5036.	4.6	25
42	Thermochemical biorefineries with multiproduction using a platform chemical. Biofuels, Bioproducts and Biorefining, 2014, 8, 155-170.	1.9	25
43	Optimal control applied to distributed solar collector fields with partial radiation. Solar Energy, 2018, 159, 811-819.	2.9	25
44	Model Predictive Control of a Wet Limestone Flue Gas Desulfurization Pilot Plant. Industrial & Engineering Chemistry Research, 2009, 48, 5399-5405.	1.8	23
45	Kinetic Modeling of Tar and Light Hydrocarbons during the Thermal Conversion of Biomass. Energy & Fuels, 2016, 30, 377-385.	2.5	20
46	Using Neural Networks to Address Nonlinear pH Control in Wet Limestone Flue Gas Desulfurization Plants. Industrial & Engineering Chemistry Research, 2010, 49, 2263-2272.	1.8	19
47	Gas–solid conversion in fluidised bed reactors. Chemical Engineering Journal, 2008, 141, 151-168.	6.6	18
48	Modeling of the in-duct sorbent injection process for flue gas desulfurization. Separation and Purification Technology, 2008, 62, 571-581.	3.9	17
49	Catalytic Seawater Flue Gas Desulfurization Model. Environmental Science & Technology, 2009, 43, 9393-9399.	4.6	17
50	Mass transport effects during measurements of gas–solid reaction kinetics in a fluidised bed. Chemical Engineering Science, 2007, 62, 1477-1493.	1.9	15
51	A pilot plant technical assessment of an advanced in-duct desulphurisation process. Journal of Hazardous Materials, 2001, 83, 197-218.	6.5	14
52	Balance and saving of GHG emissions in thermochemical biorefineries. Applied Energy, 2015, 147, 444-455.	5.1	14
53	Turnover rates for the supercritical water reforming of glycerol on supported Ni and Ru catalysts. Fuel, 2016, 180, 417-423.	3.4	14
54	Flue-Gas Desulfurization in an Advanced in-Duct Desulfurization Process:  An Empirical Model from an Experimental Pilot-Plant Study. Industrial & Engineering Chemistry Research, 2003, 42, 6625-6637.	1.8	12

#	Article	IF	CITATIONS
55	Autothermal Reforming of Glycerol with Supercritical Water for Maximum Power through a Turbine Plus a Fuel Cell. Energy & Fuels, 2013, 27, 576-587.	2.5	12
56	Syngas methanation from the supercritical water reforming of glycerol. Energy, 2014, 76, 584-592.	4.5	12
57	Radiative heat-transfer model in the interior of a pulverized coal furnace. Industrial & Engineering Chemistry Research, 1990, 29, 669-675.	1.8	11
58	An experimental study of flue gas desulfurization in a pilot spray dryer. Environmental Progress, 1997, 16, 20-28.	0.8	11
59	Flue-Cas Desulfurization in Circulating Fluidized Beds:Â An Empirical Model from an Experimental Pilot-Plant Study. Industrial & Engineering Chemistry Research, 2001, 40, 5640-5648.	1.8	11
60	A technical pilot plant assessment of flue gas desulfurisation in a circulating fluidised bed. Journal of Environmental Management, 2002, 7, 73-85.	1.7	11
61	Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings. Applied Energy, 2015, 148, 466-475.	5.1	11
62	Control Óptimo Aplicado a Campos de Colectores Solares Distribuidos. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2018, 15, 327.	0.6	11
63	Reaction-diffusion model of TGA gasification experiments for estimating diffusional effects. Fuel, 2005, , .	3.4	10
64	Controllability Analysis and Decentralized Control of a Wet Limestone Flue Gas Desulfurization Plant. Industrial & Engineering Chemistry Research, 2008, 47, 9931-9940.	1.8	10
65	A realistic approach to modeling an in-duct desulfurization process based on an experimental pilot plant study. Chemical Engineering Journal, 2008, 141, 141-150.	6.6	9
66	Dynamic Analysis and Identification of a Wet Limestone Flue Gas Desulfurization Pilot Plant. Industrial & Engineering Chemistry Research, 2008, 47, 8263-8272.	1.8	9
67	Optimum operating temperature of parabolic trough solar fields. Solar Energy, 2017, 158, 295-302.	2.9	9
68	Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS. Applied Energy, 2015, 157, 255-266.	5.1	8
69	Effect of mixing bio-oil aqueous phase model compounds on hydrogen production in non-catalytic supercritical reforming. Reaction Chemistry and Engineering, 2017, 2, 679-687.	1.9	8
70	Optimum Control of Parabolic Trough Solar Fields with Partial Radiation * *This work was supported by the projects DPI2013-44135-R and DPI2015-70973-R granted by the Spanish Ministry of Science and Innovation. IFAC-PapersOnLine, 2017, 50, 109-114.	0.5	6
71	Modeling and simulation of parabolic trough solar fields with partial radiation. , 2016, , .		5
72	Parametric testing of coal electrostatic precipitator performance. Environmental Progress, 1997, 16, 98-105.	0.8	4

#	Article	IF	CITATIONS
73	Reduction of Physical Effects during Reactivity Tests in Fluidized Bed. Industrial & Engineering Chemistry Research, 2006, 45, 7344-7350.	1.8	4
74	Comment on "A Kinetic Study of the Oxidation of S(IV) in Seawater― Environmental Science & Technology, 2002, 36, 817-817.	4.6	3
75	Response to Comment on "A Kinetic Study of the Oxidation of S(IV) in Seawater― Environmental Science & Technology, 2002, 36, 818-819.	4.6	2
76	A Mathematical Model of a Spray-dryer Flue Gas Desulflirization System. Coal Science and Technology, 1995, 24, 1867-1870.	0.0	1
77	Optimal Control of Solar Thermal Plants with Energy Storage. , 2018, , .		1
78	Flue gas desulfurization in a circulating fluidized bed. Coal Science and Technology, 1995, 24, 1843-1846.	0.0	0