Won-Tae Koo

List of Publications by Citations

Source: https://exaly.com/author-pdf/3596283/won-tae-koo-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54	2,637	30	51
papers	citations	h-index	g-index
57 ext. papers	3,359 ext. citations	12.1 avg, IF	5.68 L-index

#	Paper	IF	Citations
54	Heterogeneous Sensitization of Metal-Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13431-13437	16.4	268
53	Metal-Organic Frameworks for Chemiresistive Sensors. <i>CheM</i> , 2019 , 5, 1938-1963	16.2	216
52	Nanoscale PdO Catalyst Functionalized CoO Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. <i>ACS Applied Materials & Detection & Detect</i>)1 ² 8 ⁵ 21(0 182
51	Metal-Organic Framework Templated Catalysts: Dual Sensitization of PdO-ZnO Composite on Hollow SnO Nanotubes for Selective Acetone Sensors. <i>ACS Applied Materials & Description</i> , 9, 18069-18077	9.5	127
50	Accelerating Palladium Nanowire H Sensors Using Engineered Nanofiltration. ACS Nano, 2017, 11, 9276	-988/5	123
49	Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11868-11876	16.4	101
48	Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2016 , 224, 185-192	8.5	88
47	Exceptional High-Performance of Pt-Based Bimetallic Catalysts for Exclusive Detection of Exhaled Biomarkers. <i>Advanced Materials</i> , 2017 , 29, 1700737	24	84
46	Catalyst-decorated hollow WO3 nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor. <i>Sensors and Actuators B: Chemical</i> , 2016 , 223, 301-310	8.5	78
45	Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. <i>NPG Asia Materials</i> , 2016 , 8, e282-e282	10.3	76
44	Metal-Organic Framework Templated Synthesis of Ultrasmall Catalyst Loaded ZnO/ZnCoO Hollow Spheres for Enhanced Gas Sensing Properties. <i>Scientific Reports</i> , 2017 , 7, 45074	4.9	74
43	Nanoscale PtO Catalysts-Loaded SnO Multichannel Nanofibers toward Highly Sensitive Acetone Sensor. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 2016-2025	9.5	73
42	Bimodally Porous WO Microbelts Functionalized with Pt Catalysts for Selective HS Sensors. <i>ACS Applied Materials & Applied & Applied Materials & Applied & A</i>	9.5	63
41	Hollow Pd-Ag Composite Nanowires for Fast Responding and Transparent Hydrogen Sensors. <i>ACS Applied Materials & District Applied & Distri</i>	9.5	58
40	Few-Layered WS2 Nanoplates Confined in Co, N-Doped Hollow Carbon Nanocages: Abundant WS2 Edges for Highly Sensitive Gas Sensors. <i>Advanced Functional Materials</i> , 2018 , 28, 1802575	15.6	53
39	MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-cycle and high-capacity lithium ion battery anode. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22717-22725	13	52
38	Hierarchical Metal-Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 19957-19963	9.5	52

(2018-2015)

37	Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules. <i>Chemical Communications</i> , 2015 , 51, 2609-12	5.8	47	
36	Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO toward a Superior Chemical Sensor. <i>Small</i> , 2016 , 12, 5989-5997	11	47	
35	Pt-Functionalized PdO Nanowires for Room Temperature Hydrogen Gas Sensors. <i>ACS Sensors</i> , 2018 , 3, 2152-2158	9.2	46	
34	Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1600569	3.9	43	
33	Hierarchically interconnected porosity control of catalyst-loaded WO3 nanofiber scaffold: Superior acetone sensing layers for exhaled breath analysis. <i>Sensors and Actuators B: Chemical</i> , 2018 , 259, 616-62	2 <mark>8</mark> .5	43	
32	Chitosan-templated Pt nanocatalyst loaded mesoporous SnO nanofibers: a superior chemiresistor toward acetone molecules. <i>Nanoscale</i> , 2018 , 10, 13713-13721	7.7	42	
31	Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges. <i>ACS Nano</i> , 2020 , 14, 14284-14322	16.7	41	
30	In Situ Coupling of Multidimensional MOFs for Heterogeneous Metal-Oxide Architectures: Toward Sensitive Chemiresistors. <i>ACS Central Science</i> , 2018 , 4, 929-937	16.8	38	
29	Metal-Organic Framework-Templated PdO-CoO Nanocubes Functionalized by SWCNTs: Improved NO Reaction Kinetics on Flexible Heating Film. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 9, 40593-4059-4059-4059-4059-4059-4059-4059-4059	0693	37	
28	High-Resolution, Fast, and Shape-Conformable Hydrogen Sensor Platform: Polymer Nanofiber Yarn Coupled with Nanograined Pd@Pt. <i>ACS Nano</i> , 2019 , 13, 6071-6082	16.7	35	
27	Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support Carbon Nitride/SnO Heterojunction Trapping. <i>ACS Nano</i> , 2020 , 14, 11394-11405	16.7	35	
26	Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. <i>ACS Applied Materials & Discourse of the South</i> (1988) 10, 20540-20549	9.5	34	
25	Sub-Parts-per-Million Hydrogen Sulfide Colorimetric Sensor: Lead Acetate Anchored Nanofibers toward Halitosis Diagnosis. <i>Analytical Chemistry</i> , 2018 , 90, 8769-8775	7.8	34	
24	Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application. <i>Advanced Functional Materials</i> , 2019 , 29, 1903012	15.6	30	
23	The Design and Science of Polyelemental Nanoparticles. ACS Nano, 2020, 14, 6407-6413	16.7	29	
22	Bioinspired Cocatalysts Decorated WO Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor. <i>ACS Sensors</i> , 2018 , 3, 1164-1173	9.2	28	
21	Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. <i>Advanced Science</i> , 2019 , 6, 1900250	13.6	26	
20	Graphene oxide templating: facile synthesis of morphology engineered crumpled SnO2 nanofibers for superior chemiresistors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13825-13834	13	24	

19	Hydrogen Sensors Based on MoS Hollow Architectures Assembled by Pickering Emulsion. <i>ACS Nano</i> , 2020 , 14, 9652-9661	16.7	24
18	2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. <i>Sensors and Actuators B: Chemical</i> , 2021 , 331, 129371	8.5	23
17	Perovskite La0.75Sr0.25Cr0.5Mn0.5O3Isensitized SnO2 fiber-in-tube scaffold: highly selective and sensitive formaldehyde sensing. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10543-10551	13	22
16	Pore-Size-Tuned Graphene Oxide Membrane as a Selective Molecular Sieving Layer: Toward Ultraselective Chemiresistors. <i>Analytical Chemistry</i> , 2020 , 92, 957-965	7.8	18
15	Heterogeneous Metal Oxide-Graphene Thorn-Bush Single Fiber as a Freestanding Chemiresistor. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 10208-10217	9.5	17
14	Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO2 sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 1269-1277	8.5	16
13	Glass-Fabric Reinforced Ag Nanowire/Siloxane Composite Heater Substrate: Sub-10 nm Metal@Metal Oxide Nanosheet for Sensitive Flexible Sensing Platform. <i>Small</i> , 2018 , 14, e1802260	11	16
12	An Impedance-Transduced Chemiresistor with a Porous Carbon Channel for Rapid, Nonenzymatic, Glucose Sensing. <i>Analytical Chemistry</i> , 2018 , 90, 9338-9346	7.8	11
11	Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors. <i>ACS Applied Materials & District Materials</i>	9.5	9
10	Universal Synthesis of Porous Inorganic Nanosheets via Graphene-Cellulose Templating Route. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	7
9	Hydrogen Sensors from Composites of Ultra-small Bimetallic Nanoparticles and Porous Ion-Exchange Polymers. <i>CheM</i> , 2020 , 6, 2746-2758	16.2	7
8	Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. <i>Nature Communications</i> , 2021 , 12, 4294	17.4	6
7	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal-Organic Frameworks via Site-Specific Nucleation. <i>Advanced Materials</i> , 2021 , 33, e2101216	24	6
6	Chemiresistive acetylene sensor fabricated from Ga-doped ZnO nanofibers functionalized with Pt catalysts. <i>Sensors and Actuators B: Chemical</i> , 2021 , 343, 130137	8.5	3
5	Chemiresistors: Catalytic Metal Nanoparticles Embedded in Conductive Metal Drganic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials (Adv. Sci. 21/2019). <i>Advanced Science</i> , 2019 , 6, 1970126	13.6	1
4	Gas Sensors: Few-Layered WS2 Nanoplates Confined in Co, N-Doped Hollow Carbon Nanocages: Abundant WS2 Edges for Highly Sensitive Gas Sensors (Adv. Funct. Mater. 36/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870254	15.6	0
3	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal©rganic Frameworks via Site-Specific Nucleation (Adv. Mater. 38/2021). <i>Advanced Materials</i> , 2021 , 33, 2170302	24	O
2	Surface hydration of fibrous filters by using water-absorbing metalorganic frameworks for efficient ultrafine particulate matter removal. <i>Chemical Engineering Journal</i> , 2022 , 446, 136710	14.7	О

2D Oxide Sensors: Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application (Adv. Funct. Mater. 42/2019). *Advanced Functional Materials*, **2019**, 29, 1970290

15.6