
Carlos DurÃ;n-Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596264/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterisation of acid/basic modified adsorbents. Application for chlorophenols removal. Environmental Research, 2022, 207, 112187.	3.7	8
2	Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation. Separation and Purification Technology, 2022, 289, 120638.	3.9	8
3	Use of phosphorylated chitosan/alumina nanoadditives for polymer performance improvement. Cellulose, 2022, 29, 6677-6696.	2.4	6
4	Functional porous carbons: Synthetic strategies and catalytic application in fine chemical synthesis. , 2021, , 299-352.		2
5	Performance of Iron-Functionalized Activated Carbon Catalysts (Fe/AC-f) on CWPO Wastewater Treatment. Catalysts, 2021, 11, 337.	1.6	4
6	Carbon–Heteroatom Bond Formation via Coupling Reactions Performed on a Magnetic Nanoparticle Bed. AppliedChem, 2021, 1, 75-89.	0.2	1
7	Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today, 2020, 357, 64-73.	2.2	13
8	Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production. Renewable Energy, 2020, 160, 52-66.	4.3	53
9	Recovery of grape waste for the preparation of adsorbents for water treatment: Mercury removal. Journal of Environmental Chemical Engineering, 2020, 8, 103738.	3.3	17
10	Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models. Journal of Environmental Chemical Engineering, 2020, 8, 103928.	3.3	42
11	Sustainable Carbon-Based Materials as Heterogeneous Catalysts in Solvent-Free Acetylation Reactions. Proceedings (mdpi), 2019, 9, 40.	0.2	2
12	Adsorption in Water Treatment. , 2019, , .		16
13	Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism. Catalysis Today, 2019, 328, 172-177.	2.2	15
14	Water defluoridation with avocado-based adsorbents: Synthesis, physicochemical characterization and thermodynamic studies. Journal of Molecular Liquids, 2018, 254, 188-197.	2.3	31
15	Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem, 2018, 10, 5215-5223.	1.8	15
16	Bare TiO 2 and graphene oxide TiO 2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 2017, 416, 1013-1021.	3.1	161
17	Hydrothermal Carbonisation: An Eco-Friendly Method for the Production of Carbon Adsorbents. , 2017, , 77-108.		2
18	On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process. Applied Catalysis B: Environmental, 2016, 181, 249-259.	10.8	53

CARLOS DURÃIN-VALLE

#	Article	IF	CITATIONS
19	Analysis of synergistic and antagonistic adsorption of heavy metals and acid blue 25 on activated carbon from ternary systems. Chemical Engineering Research and Design, 2015, 93, 755-772.	2.7	58
20	Acidâ€Activated Carbon Materials: Cheaper Alternative Catalysts for the Synthesis of Substituted Quinolines. ChemCatChem, 2013, 5, 3736-3742.	1.8	24
21	Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Applied Catalysis A: General, 2012, 439-440, 24-30.	2.2	28
22	Activated carbon as a catalyst for the synthesis of N-alkylimidazoles and imidazolium ionic liquids. Catalysis Today, 2012, 187, 108-114.	2.2	32
23	Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. Journal of Hazardous Materials, 2012, 199-200, 290-300.	6.5	105
24	The effect of ultrasound on the N-alkylation of imidazole over alkaline carbons: Kinetic aspects. Applied Catalysis A: General, 2010, 378, 26-32.	2.2	14
25	Last Decade of Research on Activated Carbons as Catalytic Support in Chemical Processes. Catalysis Reviews - Science and Engineering, 2010, 52, 325-380.	5.7	81
26	Acidic Activated Carbons: An Efficient Catalyst for the Epoxide Ring-Opening Reaction with Ethanol. Catalysis Letters, 2009, 130, 37-41.	1.4	11
27	Radioactive content of charcoal. Applied Radiation and Isotopes, 2009, 67, 953-956.	0.7	8
28	Adsorption of Aqueous Mercury(II) Species by Commercial Activated Carbon Fibres with and without Surface Modification. Adsorption Science and Technology, 2007, 25, 199-215.	1.5	11
29	Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation. Applied Surface Science, 2006, 252, 6064-6066.	3.1	8
30	Preparation of charcoal from cherry stones. Applied Surface Science, 2006, 252, 5957-5960.	3.1	31
31	Catalysis by basic carbons: Preparation of dihydropyridines. Applied Surface Science, 2006, 252, 6080-6083.	3.1	43
32	Geometrical relationship between elemental composition and molecular size in carbonaceous materials. Applied Surface Science, 2006, 252, 6097-6101.	3.1	3
33	Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites. Catalysis Today, 2006, 114, 183-187.	2.2	46
34	Ultrasound accelerated Claisen–Schmidt condensation: A green route to chalcones. Applied Surface Science, 2006, 252, 6071-6074.	3.1	63
35	Alkylation of imidazole under ultrasound irradiation over alkaline carbons. Applied Surface Science, 2006, 252, 6089-6092.	3.1	12
36	Study of cherry stones as raw material in preparation of carbonaceous adsorbents. Journal of Analytical and Applied Pyrolysis, 2005, 73, 59-67.	2.6	97

CARLOS DURÃiN-VALLE

#	Article	IF	CITATIONS
37	Sonocatalysis and alkaline-doped carbons: An efficient method for the synthesis of chalcones in heterogeneous media. Catalysis Today, 2005, 107-108, 500-506.	2.2	32
38	Ultrasound-promoted N-propargylation of imidazole by alkaline-doped carbons. Carbon, 2004, 42, 1363-1366.	5.4	21
39	The effect of ultrasound on the catalytic activity of alkaline carbons: preparation of N-alkyl imidazoles. Applied Surface Science, 2004, 238, 97-100.	3.1	9
40	Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon, 2002, 40, 397-402.	5.4	67
41	Pore structure of chars and activated carbons prepared using carbon dioxide at different temperatures from extracted rockrose. Journal of Analytical and Applied Pyrolysis, 2001, 57, 1-13.	2.6	32
42	Chemical study of extracted rockrose and of chars and activated carbons prepared at different temperatures. Journal of Analytical and Applied Pyrolysis, 1999, 50, 1-16.	2.6	37
43	Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon, 1999, 37, 1517-1528.	5.4	188
44	Organic chemical structure and structural shrinkage of chars prepared from rockrose. Carbon, 1998, 36, 1251-1256.	5.4	47
45	Reactions of thioamides with metal carboxylates in organic media. Tetrahedron, 1997, 53, 14463-14480.	1.0	38
46	Heat treatment of rockrose char in air. Effect on surface chemistry and porous texture. Carbon, 1996, 34, 533-538.	5.4	36
47	NMR studies and semiempirical calculations on the structure of glycoamidines. Tetrahedron, 1996, 52, 9263-9274.	1.0	2
48	FT-IR study of rockrose and of char and activated carbon. Journal of Analytical and Applied Pyrolysis, 1996, 36, 71-80.	2.6	275
49	Synthesis of glycoamidines using a mercury-promoted reaction. Tetrahedron, 1995, 51, 8043-8056.	1.0	25
50	Reaction of thioamides with silver carboxylates in aprotic media. A nucleophilic approach to the synthesis of imides, amides, and nitriles. Tetrahedron Letters, 1994, 35, 477-480.	0.7	27
51	Modification of carbons with acids, salts, and hydrogen peroxide for the adsorption of anionic and cationic dyes in single and binary systems with Cd2+ and CrO42 , 0, 106, 139-152.		1