Guodong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/359615/publications.pdf

Version: 2024-02-01

414414 394421 1,459 32 19 32 citations h-index g-index papers 33 33 33 1829 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biochar to Reduce Fertilizer Use and Soil Salinity for Crop Production in the Yellow River Delta. Journal of Soil Science and Plant Nutrition, 2022, 22, 1478-1489.	3.4	15
2	Calcined Oyster Shell-Humic Complex as Soil Amendment to Remediate Cd- and As-Contaminated Soil. Agronomy, 2022, 12, 1413.	3.0	3
3	Biochar Modified by Nano-manganese Dioxide as Adsorbent and Oxidant for Oxytetracycline. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 269-275.	2.7	12
4	MONTMORILLONITE-HYDROCHAR NANOCOMPOSITES AS EXAMPLES OF CLAY–ORGANIC INTERACTIONS DELIVERING ECOSYSTEM SERVICES. Clays and Clay Minerals, 2021, 69, 406-415.	1.3	6
5	Low-cost field production of biochars and their properties. Environmental Geochemistry and Health, 2020, 42, 1569-1578.	3.4	30
6	Limited Cu(II) binding to biochar DOM: Evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis. Science of the Total Environment, 2020, 701, 134919.	8.0	57
7	Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agriculture, Ecosystems and Environment, 2020, 303, 107124.	5 . 3	45
8	Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 277-282.	2.7	21
9	Coupled effects of biochar use and farming practice on physical properties of a salt-affected soil with wheat–maize rotation. Journal of Soils and Sediments, 2020, 20, 3053-3061.	3.0	19
10	Pyrolysis Temperature-Dependent Changes in the Characteristics of Biochar-Borne Dissolved Organic Matter and Its Copper Binding Properties. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 169-174.	2.7	53
11	Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions. Journal of Hazardous Materials, 2019, 368, 541-549.	12.4	73
12	Kinetics and Thermodynamics of Uranium (VI) Adsorption onto Humic Acid Derived from Leonardite. International Journal of Environmental Research and Public Health, 2019, 16, 1552.	2.6	10
13	Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environmental Pollution, 2019, 251, 56-65.	7. 5	73
14	A Soluble Humic Substance for the Simultaneous Removal of Cadmium and Arsenic from Contaminated Soils. International Journal of Environmental Research and Public Health, 2019, 16, 4999.	2.6	19
15	Humic substances as a washing agent for Cd-contaminated soils. Chemosphere, 2017, 181, 461-467.	8.2	79
16	Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. Journal of Environmental Radioactivity, 2017, 180, 1-8.	1.7	21
17	Leonardite-derived humic substances are great adsorbents for cadmium. Environmental Science and Pollution Research, 2017, 24, 23006-23014.	5.3	31
18	Novel Core–Shell Structured Mn–Fe/MnO ₂ Magnetic Nanoparticles for Enhanced Pb(II) Removal from Aqueous Solution. Industrial & Engineering Chemistry Research, 2014, 53, 18481-18488.	3.7	33

#	Article	IF	CITATIONS
19	An organoclay formula for the slow release of soluble compounds. Applied Clay Science, 2014, 100, 84-87.	5.2	11
20	Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 2012, 56, 77-83.	5.2	51
21	Copper, zinc, and nickel in soil solution affected by biosolids amendment and soil management. Soil Research, 2009, 47, 305.	1.1	9
22	Nanomaterials to the rescue. Nano Today, 2008, 3, 61.	11.9	7
23	Nanoparticles in the Soil Environment. Elements, 2008, 4, 395-399.	0.5	222
24	Environmental materials research: opportunities and challenges in China. International Journal of Sustainable Development and World Ecology, 2008, 15, 1S-10S.	5.9	3
25	Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 2007, 35, 180-188.	5.2	236
26	Allophane nanoclay for the removal of phosphorus in water and wastewater. Science and Technology of Advanced Materials, 2007, 8, 60-62.	6.1	72
27	Environmental Nanomaterials: Occurrence, Syntheses, Characterization, Health Effect, and Potential Applications. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2545-2548.	1.7	24
28	Natural and Modified Nanomaterials as Sorbents of Environmental Contaminants. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2661-2670.	1.7	58
29	Defining the Distribution Coefficient of Heavy Metals Introduced to Soils. Communications in Soil Science and Plant Analysis, 2003, 34, 2315-2326.	1.4	2
30	Interactions of allophane with humic acid and cations. European Journal of Soil Science, 2000, 51, 35-41.	3.9	58
31	A 13 C-NMR study of the interactions of soil organic matter with aluminium and allophane in podzols. European Journal of Soil Science, 1999, 50, 695-700.	3.9	60
32	Assessing the surface composition of soil particles from some Podzolic soils by X-ray photoelectron spectroscopy. Geoderma, 1998, 86, 169-181.	5.1	46