
Upeksha Caldera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 2021, 227, 120467.	4.5	358
2	On the role of solar photovoltaics in global energy transition scenarios. Progress in Photovoltaics: Research and Applications, 2017, 25, 727-745.	4.4	250
3	Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate. Desalination, 2016, 385, 207-216.	4.0	176
4	Role of Seawater Desalination in the Management of an Integrated Water and 100% Renewable Energy Based Power Sector in Saudi Arabia. Water (Switzerland), 2018, 10, 3.	1.2	113
5	Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future. Water Resources Research, 2017, 53, 10523-10538.	1.7	108
6	An energy transition pathway for Turkey to achieve 100% renewable energy powered electricity, desalination and non-energetic industrial gas demand sectors by 2050. Solar Energy, 2017, 158, 218-235.	2.9	70
7	Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nature Energy, 2019, 4, 1040-1048.	19.8	60
8	The role that battery and water storage play in Saudi Arabia's transition to an integrated 100% renewable energy power system. Journal of Energy Storage, 2018, 17, 299-310.	3.9	58
9	Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050. Sustainability, 2020, 12, 4921.	1.6	57
10	Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems. Energy, 2020, 200, 117507.	4.5	49
11	The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile. Renewable and Sustainable Energy Reviews, 2021, 151, 111557.	8.2	49
12	Assessing the potential for renewable energy powered desalination for the global irrigation sector. Science of the Total Environment, 2019, 694, 133598.	3.9	40
13	Global energy transition to 100% renewables by 2050: Not fiction, but much needed impetus for developing economies to leapfrog into a sustainable future. Energy, 2022, 246, 123419.	4.5	39
14	Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. Journal of Cleaner Production, 2021, 293, 126195.	4.6	33
15	Renewable energy in Pakistan: Paving the way towards a fully renewablesâ€based energy system across the power, heat, transport and desalination sectors by 2050. IET Renewable Power Generation, 2022, 16, 177-197.	1.7	24
16	Impact of Battery and Water Storage on the Transition to an Integrated 100% Renewable Energy Power System for Saudi Arabia. Energy Procedia, 2017, 135, 126-142.	1.8	21
17	Irrigation efficiency and renewable energy powered desalination as key components of Pakistan's water management strategy. Smart Energy, 2021, 4, 100052.	2.6	16
18	Material extraction potential of desalination brines: A technical and economic evaluation of brines as a possible new material source. Minerals Engineering, 2022, 185, 107652.	1.8	7

#	Article	IF	CITATIONS
19	Desalination Costs Using Renewable Energy Technologies. , 2018, , 287-329.		3