Xianfu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3595905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 2016, 8, 5696-5705.	2.8	215
2	One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Separation and Purification Technology, 2019, 210, 511-520.	3.9	116
3	Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol–gel method. Microporous and Mesoporous Materials, 2015, 214, 195-203.	2.2	84
4	Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. Journal of Membrane Science, 2018, 565, 303-310.	4.1	84
5	One-step preparation of high-performance bilayer α-alumina ultrafiltration membranes via co-sintering process. Journal of Membrane Science, 2017, 524, 141-150.	4.1	70
6	Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 2018, 443, 212-220.	4.0	70
7	Fabrication of TiO2-doped ZrO2 nanofiltration membranes by using a modified colloidal sol-gel process and its application in simulative radioactive effluent. Journal of Membrane Science, 2016, 514, 476-486.	4.1	68
8	One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. Journal of Membrane Science, 2021, 621, 118954.	4.1	68
9	Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol. Chinese Journal of Chemical Engineering, 2015, 23, 1102-1109.	1.7	66
10	Modified colloidal sol–gel process for fabrication of titania nanofiltration membranes with organic additives. Journal of Membrane Science, 2015, 476, 432-441.	4.1	55
11	Preparation of zirconia nanofiltration membranes through an aqueous sol–gel process modified by glycerol for the treatment of wastewater with high salinity. Journal of Membrane Science, 2016, 504, 29-39.	4.1	55
12	Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science, 2020, 593, 117402.	4.1	52
13	Ceramic nanofiltration and membrane distillation hybrid membrane processes for the purification and recycling of boric acid from simulative radioactive waste water. Journal of Membrane Science, 2019, 579, 294-301.	4.1	50
14	Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. Separation and Purification Technology, 2019, 215, 143-154.	3.9	46
15	Novel pore size tuning method for the fabrication of ceramic multi-channel nanofiltration membrane. Journal of Membrane Science, 2018, 552, 77-85.	4.1	44
16	A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. Separation and Purification Technology, 2019, 219, 127-136.	3.9	43
17	Self-Cleaning Piezoelectric Membrane for Oil-in-Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 18093-18103.	4.0	42
18	Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process. Ceramics International, 2018, 44, 21159-21169.	2.3	41

XIANFU CHEN

#	Article	IF	CITATIONS
19	Fabrication of a charged PDA/PEI/Al2O3 composite nanofiltration membrane for desalination at high temperatures. Separation and Purification Technology, 2021, 263, 118388.	3.9	41
20	Low temperature sintering preparation of high-permeability TiO2/Ti composite membrane via facile coating method. Applied Surface Science, 2015, 349, 8-16.	3.1	35
21	Fabrication of palladium–titania nanofiltration membranes via a colloidal sol–gel process. Microporous and Mesoporous Materials, 2015, 201, 202-209.	2.2	35
22	Fabrication and in-situ fouling mitigation of a supported carbon nanotube/γ-alumina ultrafiltration membrane. Journal of Membrane Science, 2018, 550, 26-35.	4.1	35
23	Facile Mixing Process To Fabricate Fly-Ash-Enhanced Alumina-Based Membrane Supports for Industrial Microfiltration Applications. Industrial & Engineering Chemistry Research, 2019, 58, 8712-8723.	1.8	33
24	PZT/Ti composite piezoceramic membranes for liquid filtration: Fabrication and self-cleaning properties. Journal of Membrane Science, 2019, 581, 28-37.	4.1	32
25	Facile and Efficient Construction of Waterâ€Soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins. Advanced Functional Materials, 2019, 29, 1901830.	7.8	31
26	Enhanced performance arising from low-temperature preparation of α-alumina membranes via titania doping assisted sol-gel method. Journal of Membrane Science, 2018, 559, 19-27.	4.1	27
27	Feasibility analysis of SO2 absorption using a hydrophilic ceramic membrane contactor. Chinese Journal of Chemical Engineering, 2018, 26, 2139-2147.	1.7	24
28	Optimization of microstructure and geometry of hydrophobic ceramic membrane for SO ₂ absorption from ship exhaust. AICHE Journal, 2019, 65, 409-420.	1.8	22
29	Optimization of UV-curable alumina suspension for digital light processing of ceramic membranes. Journal of Membrane Science, 2022, 643, 120066.	4.1	22
30	Ultrasound Assisted Synthesis of Size-Controlled Aqueous Colloids for the Fabrication of Nanoporous Zirconia Membrane. Frontiers in Chemistry, 2019, 7, 337.	1.8	21
31	A facile nanoparticle doping sol–gel method for the fabrication of defect-free nanoporous ceramic membranes. Colloids and Interface Science Communications, 2015, 5, 12-15.	2.0	20
32	Three-dimensional printing of high-flux ceramic membranes with an asymmetric structure via digital light processing. Ceramics International, 2022, 48, 304-312.	2.3	20
33	High-performance self-cleaning piezoelectric membrane integrated with in-situ ultrasound for wastewater treatment. Journal of the European Ceramic Society, 2020, 40, 3632-3641.	2.8	20
34	Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide. Journal of Membrane Science, 2020, 597, 117631.	4.1	18
35	Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. Journal of Membrane Science, 2021, 634, 119378.	4.1	18
36	Hydrophilic membrane contactor for improving selective removal of SO2 by NaOH solution. Separation and Purification Technology, 2020, 250, 117134.	3.9	18

XIANFU CHEN

#	Article	IF	CITATIONS
37	Robust CNT-based conductive ultrafiltration membrane with tunable surface potential for in situ fouling mitigation. Applied Surface Science, 2019, 497, 143786.	3.1	17
38	Mass-Transfer Characteristics and Optimization of a Hydrophilic Ceramic Membrane Contactor for SO ₂ Absorption. Industrial & Engineering Chemistry Research, 2019, 58, 20828-20837.	1.8	17
39	Modified hydrothermal treatment route for high-yield preparation of nanosized ZrO2. Ceramics International, 2020, 46, 19807-19814.	2.3	17
40	Investigation of Mass Transfer Characteristics of SO ₂ Absorption into NaOH in a Multichannel Ceramic Membrane Contactor. Industrial & Engineering Chemistry Research, 2020, 59, 11054-11062.	1.8	17
41	Efficient construction of a robust PTFE/Al2O3 hydrophobic membrane for effective oil purification. Chemical Engineering Journal, 2022, 435, 134972.	6.6	17
42	Enhanced Performance of Fly Ash-Based Supports for Low-Cost Ceramic Membranes with the Addition of Bauxite. Membranes, 2021, 11, 711.	1.4	16
43	Design and Efficient Construction of Bilayer Al ₂ O ₃ /ZrO ₂ Mesoporous Membranes for Effective Treatment of Suspension Systems. Industrial & Engineering Chemistry Research, 2020, 59, 4721-4731.	1.8	15
44	Fabrication of a Ceramic Membrane with Antifouling PTFE Coating for Gas-Absorption Desulfurization. Industrial & Engineering Chemistry Research, 2021, 60, 2492-2500.	1.8	13
45	A new method for preparing $\hat{l}\pm$ -alumina ultrafiltration membrane at low sintering temperature. Journal of Membrane Science, 2022, 642, 119992.	4.1	13
46	Fouling behavior of nanoporous ceramic membranes in the filtration of oligosaccharides at different temperatures. Separation and Purification Technology, 2021, 278, 119589.	3.9	12
47	Modified wet chemical method synthesis of nano-ZrO2 and its application in preparing membranes. Ceramics International, 2021, 47, 13432-13439.	2.3	11
48	Nanostructures: Facile and Efficient Construction of Waterâ€Soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins (Adv. Funct. Mater. 31/2019). Advanced Functional Materials, 2019, 29, 1970216.	7.8	10
49	Influence of compatibility between sol and intermediate layer on the performance of yttria-stabilized zirconia nanofiltration membrane. Ceramics International, 2021, 47, 22801-22809.	2.3	10
50	Self-cleaning performance of in-situ ultrasound generated by quartz-based piezoelectric membrane. Separation and Purification Technology, 2022, 282, 120031.	3.9	10
51	Construction of high-performance CeO2 ultrafiltration membrane for high-temperature dye/salt separation. Journal of Membrane Science, 2021, 637, 119608.	4.1	9
52	Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater. Chinese Journal of Chemical Engineering, 2022, 41, 267-277.	1.7	9
53	Rapid removal of lactose for low-lactose milk by ceramic membranes. Separation and Purification Technology, 2022, 289, 120601.	3.9	9
54	1.11 Ceramic Membranes. , 2017, , 270-297.		8

XIANFU CHEN

#	Article	IF	CITATIONS
55	Zwitterionic monolayer grafted ceramic membrane with an antifouling performance for the efficient oil–water separation. Chinese Journal of Chemical Engineering, 2022, 42, 227-235.	1.7	8
56	Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, 2020, 253, 117491.	3.9	7
57	Critical gas velocity of hydrophobic ceramic membrane contactors for SO2 absorption. Chemical Engineering Science, 2021, 231, 116327.	1.9	7
58	Permeability and Stability of Hydrophobic Tubular Ceramic Membrane Contactor for CO2 Desorption from MEA Solution. Membranes, 2022, 12, 8.	1.4	5
59	Application of piezoelectric quartz for self-cleaning membrane preparation. Ceramics International, 2022, 48, 16599-16610.	2.3	5
60	Geometry effect on membrane absorption for <scp>CO₂</scp> capture. Part I: A hybrid modeling approach. AICHE Journal, 2022, 68, e17471.	1.8	4
61	Fabrication of a dual-layer ceramic mesoporous membrane with high flux via a co-sintering process. Microporous and Mesoporous Materials, 2022, 334, 111764.	2.2	4
62	Efficient Estimation of Permeate Flux of Asymmetric Ceramic Membranes for Vacuum Membrane Distillation. Molecules, 2022, 27, 1057.	1.7	3
63	Suitable membrane absorption mode for diluted gas absorption - hydrophobic or hydrophilic. Separation and Purification Technology, 2022, 298, 121646.	3.9	2