
William S James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3595610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutralizing Antibodies to SARSâ€CoVâ€2 Selected from a Human Antibody Library Constructed Decades Ago. Advanced Science, 2022, 9, e2102181.	5.6	14
2	Structures and therapeutic potential of anti-RBD human monoclonal antibodies against SARS-CoV-2. Theranostics, 2022, 12, 1-17.	4.6	6
3	T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe, The, 2022, 3, e21-e31.	3.4	131
4	An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nature Immunology, 2022, 23, 50-61.	7.0	110
5	Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. ELife, 2022, 11, .	2.8	33
6	Aberrant inflammatory responses to type I interferon in STAT2 or IRF9 deficiency. Journal of Allergy and Clinical Immunology, 2022, 150, 955-964.e16.	1.5	19
7	Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Frontiers in Immunology, 2022, 13, 773191.	2.2	11
8	Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Frontiers in Microbiology, 2022, 13, 743147.	1.5	11
9	Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nature Communications, 2022, 13, 1251.	5.8	20
10	A rapid antibody screening haemagglutination test for predicting immunity to SARS-CoV-2 variants of concern. Communications Medicine, 2022, 2, .	1.9	3
11	Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Neglected Tropical Diseases, 2022, 16, e0010291.	1.3	11
12	In vitro Quantitative Imaging Assay for Phagocytosis of Dead Neuroblastoma Cells by iPSC-Macrophages. Journal of Visualized Experiments, 2021, , .	0.2	2
13	Breadth and function of antibody response to acute SARS-CoV-2 infection in humans. PLoS Pathogens, 2021, 17, e1009352.	2.1	56
14	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	1.2	55
15	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	13.5	331
16	Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports, 2021, 35, 109020.	2.9	64
17	Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021, 184, 2348-2361.e6.	13.5	936
18	Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 2021, 184, 2201-2211.e7.	13.5	442

#	Article	IF	CITATIONS
19	Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nature Communications, 2021, 12, 4629.	5.8	108
20	Differentiation of human induced pluripotent stem cells to authentic macrophages using a defined, serum-free, open-source medium. Stem Cell Reports, 2021, 16, 1735-1748.	2.3	25
21	Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nature Communications, 2021, 12, 5061.	5.8	150
22	The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein. Royal Society Open Science, 2021, 8, 211016.	1.1	19
23	A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nature Communications, 2021, 12, 5469.	5.8	102
24	Hide and Seek: The Interplay Between Zika Virus and the Host Immune Response. Frontiers in Immunology, 2021, 12, 750365.	2.2	16
25	SARS-CoV-2 Variants, Vaccines, and Host Immunity. Frontiers in Immunology, 2021, 12, 809244.	2.2	176
26	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	6.3	2,080
27	Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature Structural and Molecular Biology, 2020, 27, 846-854.	3.6	434
28	TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimer's Research and Therapy, 2020, 12, 151.	3.0	35
29	Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural and Molecular Biology, 2020, 27, 950-958.	3.6	268
30	A novel biparatopic hybrid antibody-ACE2 fusion that blocks SARS-CoV-2 infection: implications for therapy. MAbs, 2020, 12, 1804241.	2.6	28
31	Pharmacological activation of the circadian component REV-ERB inhibits HIV-1 replication. Scientific Reports, 2020, 10, 13271.	1.6	33
32	Honing the Double-Edged Sword: Improving Human iPSC-Microglia Models. Frontiers in Immunology, 2020, 11, 614972.	2.2	15
33	Interferonâ€stimulated gene products as regulators of central carbon metabolism. FEBS Journal, 2020, 288, 3715-3726.	2.2	9
34	LRRK2 Is Recruited to Phagosomes and Co-recruits RAB8 and RAB10 in Human Pluripotent Stem Cell-Derived Macrophages. Stem Cell Reports, 2020, 14, 940-955.	2.3	65
35	Viperin, through its radicalâ€SAM activity, depletes cellular nucleotide pools and interferes with mitochondrial metabolism to inhibit viral replication. FEBS Letters, 2020, 594, 1624-1630.	1.3	28
36	Mechanism of Diol Dehydration by a Promiscuous Radical AM Enzyme Homologue of the Antiviral Enzyme Viperin (RSAD2). ChemBioChem, 2020, 21, 1605-1612.	1.3	18

#	Article	IF	CITATIONS
37	ddhCTP produced by the radicalâ€SAM activity of RSAD2 (viperin) inhibits the NAD + â€dependent activity of enzymes to modulate metabolism. FEBS Letters, 2020, 594, 1631-1644.	1.3	26
38	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	0.9	81
39	SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Research, 2020, 5, 181.	0.9	122
40	The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. Journal of Anatomy, 2019, 235, 468-480.	0.9	13
41	RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death and Disease, 2018, 9, 973.	2.7	33
42	Lentiviral gene therapy vector with UCOE stably restores function in iPSC-derived neutrophils of a CDG patient. Matters, 2018, 2018, .	1.0	5
43	Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages. Stem Cell Reports, 2017, 8, 334-345.	2.3	145
44	The nature and nurture of cell heterogeneity: accounting for macrophage gene-environment interactions with single-cell RNA-Seq. BMC Genomics, 2017, 18, 53.	1.2	24
45	LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochemical Society Transactions, 2017, 45, 131-139.	1.6	72
46	A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports, 2017, 8, 1727-1742.	2.3	379
47	Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages. Scientific Reports, 2017, 7, 9003.	1.6	85
48	Variant U1 snRNAs are implicated in human pluripotent stem cell maintenance and neuromuscular disease. Nucleic Acids Research, 2016, 44, 10960-10973.	6.5	26
49	A novel real time imaging platform to quantify macrophage phagocytosis. Biochemical Pharmacology, 2016, 116, 107-119.	2.0	127
50	ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons. Stem Cell Reports, 2016, 6, 342-356.	2.3	279
51	CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 2015, 43, 838-848.e3.	0.2	116
52	Physiological Characterisation of Human iPS-Derived Dopaminergic Neurons. PLoS ONE, 2014, 9, e87388.	1.1	128
53	The Productive Entry Pathway of HIV-1 in Macrophages Is Dependent on Endocytosis through Lipid Rafts Containing CD4. PLoS ONE, 2014, 9, e86071.	1.1	38
54	Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Research, 2013, 23, 281-291.	2.4	70

#	Article	IF	CITATIONS
55	Several Commercially Available Anti-CCR5 Monoclonal Antibodies Lack Specificity and Should Be Used with Caution. Hybridoma, 2012, 31, 7-19.	0.5	11
56	Derivation and Functional Analysis of Patient-Specific Induced Pluripotent Stem Cells as an In Vitro Model of Chronic Granulomatous Disease. Stem Cells, 2012, 30, 599-611.	1.4	69
57	HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology, 2011, 409, 234-250.	1.1	92
58	Protection of HIV Neutralizing Aptamers against Rectal and Vaginal Nucleases. Journal of Biological Chemistry, 2011, 286, 2526-2535.	1.6	30
59	Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides. Journal of General Virology, 2011, 92, 1493-1499.	1.3	23
60	Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Human Molecular Genetics, 2011, 20, 2905-2913.	1.4	23
61	Protein Kinase C and NF-κB–Dependent CD4 Downregulation in Macrophages Induced by T Cell-Derived Soluble Factors: Consequences for HIV-1 Infection. Journal of Immunology, 2011, 187, 748-759.	0.4	12
62	Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration. PLoS Pathogens, 2011, 7, e1002194.	2.1	114
63	Episomal Transgene Expression in Pluripotent Stem Cells. Methods in Molecular Biology, 2011, 767, 369-387.	0.4	2
64	Proteomic-Based Identification of CD4-Interacting Proteins in Human Primary Macrophages. PLoS ONE, 2011, 6, e18690.	1.1	11
65	Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnology Progress, 2010, 26, 781-788.	1.3	33
66	Derivation and characterisation of the human embryonic stem cell line, OxF1. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 173-177.	0.7	2
67	The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnology Progress, 2010, 26, 827-837.	1.3	99
68	Identification of an Intercistronic Internal Ribosome Entry Site in a Marek's Disease Virus Immediate-Early Gene. Journal of Virology, 2009, 83, 5846-5853.	1.5	19
69	The 5′ Leader of the mRNA Encoding the Marek's Disease Virus Serotype 1 pp14 Protein Contains an Intronic Internal Ribosome Entry Site with Allosteric Properties. Journal of Virology, 2009, 83, 12769-12778.	1.5	14
70	HIV entry in macrophages is dependent on intact lipid rafts. Virology, 2009, 386, 192-202.	1.1	118
71	Conformational pH dependence of intermediate states during oligomerization of the human prion protein. Protein Science, 2008, 17, 537-544.	3.1	42
72	An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site. Virology, 2008, 381, 46-54.	1.1	52

#	Article	IF	CITATIONS
73	Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Experimental Hematology, 2008, 36, 1167-1175.	0.2	143
74	Inter-Oligomer Interactions of the Human Prion Protein Are Modulated by the Polymorphism at Codon 129. Journal of Molecular Biology, 2008, 381, 212-220.	2.0	18
75	Oligomerization of the Human Prion Protein Proceeds via a Molten Globule Intermediate. Journal of Biological Chemistry, 2007, 282, 6300-6307.	1.6	70
76	Aptamers in the virologists' toolkit. Journal of General Virology, 2007, 88, 351-364.	1.3	71
77	Molecular Heterosis of Prion Protein β-Oligomers. Journal of Biological Chemistry, 2006, 281, 34171-34178.	1.6	22
78	An Aptamer That Neutralizes R5 Strains of Human Immunodeficiency Virus Type 1 Blocks gp120-CCR5 Interaction. Journal of Virology, 2005, 79, 13806-13810.	1.5	80
79	Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. Rna, 2005, 11, 873-884.	1.6	77
80	The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Letters, 2005, 579, 2589-2596.	1.3	40
81	Rapid formation of amyloid from Â-monomeric recombinant human PrP in vitro. Protein Science, 2005, 14, 942-947.	3.1	19
82	Students need education fit for professional and public life. BMJ: British Medical Journal, 2005, 331, 966.2.	2.4	1
83	Methionine 129 Variant of Human Prion Protein Oligomerizes More Rapidly than the Valine 129 Variant. Journal of Biological Chemistry, 2004, 279, 31390-31397.	1.6	55
84	Structural Determinants of Conformationally Selective, Prion-binding Aptamers. Journal of Biological Chemistry, 2004, 279, 13102-13109.	1.6	88
85	Assessing potential: the development of selection procedures for the Oxford medical course. Oxford Review of Education, 2004, 30, 241-255.	1.4	4
86	Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature, 2004, 432, 526-530.	13.7	103
87	Competing intrachain interactions regulate the formation of beta-sheet fibrils in bovine PrP peptides. Protein Science, 2003, 12, 600-608.	3.1	13
88	Neutralization of Infectivity of Diverse R5 Clinical Isolates of Human Immunodeficiency Virus Type 1 by gp120-Binding 2′F-RNA Aptamers. Journal of Virology, 2003, 77, 12692-12698.	1.5	167
89	Characterization of 2′-Fluoro-RNA Aptamers That Bind Preferentially to Disease-associated Conformations of Prion Protein and Inhibit Conversion. Journal of Biological Chemistry, 2003, 278, 39697-39705.	1.6	156
90	Molecular epidemiology of dengue virus type 3 in Venezuela. Journal of General Virology, 2003, 84, 1569-1575.	1.3	77

#	Article	IF	CITATIONS
91	High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Research, 2002, 30, 45e-45.	6.5	56
92	Structural characterization of a 2′F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120. Biochemical and Biophysical Research Communications, 2002, 293, 924-931.	1.0	54
93	Nucleic acid and polypeptide aptamers: a powerful approach to ligand discovery. Current Opinion in Pharmacology, 2001, 1, 540-546.	1.7	44
94	Neurological manifestations of dengue infection. Lancet, The, 2000, 355, 1053-1059.	6.3	500
95	Cell-surface heparan sulfate facilitates human immunodeficiency virus Type 1 entry into some cell lines but not primary lymphocytes. Virus Research, 1999, 60, 159-169.	1.1	42
96	The Use of Ribozymes in Gene Therapy Approaches to AIDS. Recent Results in Cancer Research, 1998, 144, 139-146.	1.8	5
97	Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. Journal of Immunology, 1998, 160, 5209-12.	0.4	74
98	Computational Approaches to the Identification of Ribozyme Target Sites. , 1997, 74, 17-26.		11
99	Affinity and Kinetics of the Interaction between Soluble Trimeric OX40 Ligand, a Member of the Tumor Necrosis Factor Superfamily, and Its Receptor OX40 on Activated T Cells. Journal of Biological Chemistry, 1997, 272, 5275-5282.	1.6	50
100	Role of CD4 epitopes outside the gp120-binding site during entry of human immunodeficiency virus type 1. Journal of Virology, 1997, 71, 1476-1484.	1.5	10
101	Comparison of p24 measurement by ELISA versus indicator cells for detecting residual HIV infectivity in vitro. Journal of Virological Methods, 1996, 58, 167-173.	1.0	3
102	The bicyclams, a new class of potent human immunodeficiency virus inhibitors, block viral entry after binding. Antiviral Research, 1996, 29, 209-219.	1.9	59
103	OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. European Journal of Immunology, 1996, 26, 1695-1699.	1.6	129
104	The Receptor for HIV: Dissection of CD4 and Studies on Putative Accessory Factors. Current Topics in Microbiology and Immunology, 1996, 205, 137-158.	0.7	18
105	RNA enzymes as tools for gene ablation. Current Opinion in Biotechnology, 1995, 6, 44-49.	3.3	26
106	Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site Genes and Development, 1995, 9, 3008-3025.	2.7	108
107	Cytotoxic T Lymphocyte Lysis Inhibited by Viable HIV Mutants. Science, 1995, 270, 1360-1362.	6.0	107
108	The alpha-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. Journal of Virology, 1995, 69, 5791-5797.	1.5	143

#	Article	IF	CITATIONS
109	Definition of the range and distribution of human immunodeficiency virus macrophage tropism using PCR-based infectivity measurements. Journal of General Virology, 1994, 75, 1597-1603.	1.3	27
110	A rodent cell line permissive for entry and reverse transcription of human immunodeficiency virus type 1 has a pre-integration block to productive infection. Journal of General Virology, 1994, 75, 2615-2623.	1.3	18
111	Heterokaryons Formed between a Rat Myeloma and a Mouse Fibroblast Are Permissive for Entry of HIV Type 1. AIDS Research and Human Retroviruses, 1994, 10, 1609-1611.	0.5	3
112	HIV-1 pseudotype virus containing a Cocal virus genome and an HIV envelope: construction, assay and use. Journal of Virological Methods, 1993, 44, 287-304.	1.0	11
113	The recognition of chimeras of rat and human CD4 by HIV-1 gpl20 and by monoclonal antibodies. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 342, 75-81.	1.8	1
114	Inhibition of HIV-1 replication by ribozymes that show poor activityin vitro. Nucleic Acids Research, 1993, 21, 5251-5255.	6.5	104
115	A rat CD4 mutant containing the gp120-binding site mediates human immunodeficiency virus type 1 infection Journal of Experimental Medicine, 1993, 177, 949-954.	4.2	39
116	Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro Journal of Experimental Medicine, 1993, 178, 743-747.	4.2	109
117	Gene Inhibition of HIV-1 Replication Annals of the New York Academy of Sciences, 1992, 660, 274-275.	1.8	4
118	Development of techniques to analyse the formation of HIV provirus in primary human macrophages. Research in Virology, 1991, 142, 105-112.	0.7	25
119	Inhibition of heterologous strains of HIV by antisense RNA. Aids, 1991, 5, 145-152.	1.0	39
120	Towards Gene-Inhibition Therapy: A Review of Progress and Prospects in the Field of Antiviral Antisense Nucleic Acids and Ribozymes. Antiviral Chemistry and Chemotherapy, 1991, 2, 191-214.	0.3	14
121	Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. Journal of General Virology, 1990, 71, 1965-1974.	1.3	94
122	The cytochrome oxidases ofBacillus subtilis: mapping of a gene affecting cytochromeaa3and its replacement by cytochromeoin a mutant strain. FEMS Microbiology Letters, 1989, 58, 277-281.	0.7	22
123	PCR and the cloning of receptor subtype genes. Trends in Pharmacological Sciences, 1989, 10, 346-348.	4.0	17
124	The cytochrome oxidases of Bacillus subtilis: mapping of a gene affecting cytochrome aa3 and its replacement by cytochrome o in a mutant strain. FEMS Microbiology Letters, 1989, 49, 277-81.	0.7	7
125	The Head-Tail Linker Protein of Bacteriophage T5: Genetic and Immunological Studies. Journal of General Virology, 1987, 68, 957-963.	1.3	0
126	Host-adaptive Antigenic Variation in Bunyaviruses. Journal of General Virology, 1986, 67, 2803-2806.	1.3	11

#	Article	IF	CITATIONS
127	Protease Production during Sporulation of Germination Mutants of Bacillus subtilis and the Cloning of a Functional gerE Gene. Microbiology (United Kingdom), 1985, 131, 2421-2430.	0.7	19
128	spoVIC a New Sporulation Locus in Bacillus subtilis Affecting Spore Germination and the Rate of Sporulation. Microbiology (United Kingdom), 1985, 131, 2409-2419.	0.7	5
129	Reduced Neutralization of SARS-CoV-2 B.1.1.7 Variant from Naturally Acquired and Vaccine Induced Antibody Immunity. SSRN Electronic Journal, 0, , .	0.4	2
130	T-Cell and Antibody Responses to First BNT162b2 Vaccine Dose in Previously SARS-CoV-2-Infected and Infection-Naive UK Healthcare Workers: A Multicentre, Prospective, Observational Cohort Study. SSRN Electronic Journal, 0, , .	0.4	15
131	Hypoxic and Pharmacological Activation of HIF Inhibits SARS-CoV-2 Infection of Lung Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	2
132	SARS-CoV-2 Assembly and Egress Pathway Revealed by Correlative Multi-Modal Multi-Scale Cryo-Imaging. SSRN Electronic Journal, 0, , .	0.4	3