Lukas Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/359504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Molecular and Cellular Proteomics, 2012, 11, O111.016717.	3.8	2,285
2	Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues. Molecular and Cellular Proteomics, 2015, 14, 1400-1410.	3.8	873
3	Using i <scp>RT</scp> , a normalized retention time for more targeted measurement of peptides. Proteomics, 2012, 12, 1111-1121.	2.2	517
4	mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nature Methods, 2011, 8, 430-435.	19.0	481
5	Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results. Molecular and Cellular Proteomics, 2017, 16, 2296-2309.	3.8	349
6	A multicenter study benchmarks software tools for label-free proteome quantification. Nature Biotechnology, 2016, 34, 1130-1136.	17.5	321
7	A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature, 2013, 494, 266-270.	27.8	307
8	Protein Identification False Discovery Rates for Very Large Proteomics Data Sets Generated by Tandem Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 2405-2417.	3.8	282
9	Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nature Communications, 2020, 11, 787.	12.8	251
10	Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nature Methods, 2017, 14, 921-927.	19.0	189
11	Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance. Molecular and Cellular Proteomics, 2019, 18, 1242-1254.	3.8	162
12	Reproducible and Consistent Quantification of the Saccharomyces cerevisiae Proteome by SWATH-mass spectrometry *. Molecular and Cellular Proteomics, 2015, 14, 739-749.	3.8	158
13	Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Molecular Omics, 2019, 15, 348-360.	2.8	137
14	Highâ€precision iRT prediction in the targeted analysis of dataâ€independent acquisition and its impact on identification and quantitation. Proteomics, 2016, 16, 2246-2256.	2.2	114
15	Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass Spectrometer. Journal of Proteome Research, 2015, 14, 4752-4762.	3.7	109
16	Comparison of Protein Quantification in a Complex Background by DIA and TMT Workflows with Fixed Instrument Time. Journal of Proteome Research, 2019, 18, 1340-1351.	3.7	107
17	Comprehensive quantitative analysis of central carbon and aminoâ€acid metabolism in <i>Saccharomyces cerevisiae</i> under multiple conditions by targeted proteomics. Molecular Systems Biology, 2011, 7, 464.	7.2	105
18	A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nature Methods, 2010, 7, 837-842.	19.0	80

Lukas Reiter

#	Article	IF	CITATIONS
19	A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nature Communications, 2020, 11, 4200.	12.8	78
20	Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC and data-independent acquisition. Scientific Reports, 2018, 8, 4346.	3.3	66
21	MassIVE.quant: a community resource of quantitative mass spectrometry–based proteomics datasets. Nature Methods, 2020, 17, 981-984.	19.0	66
22	New targeted approaches for the quantification of dataâ€independent acquisition mass spectrometry. Proteomics, 2017, 17, 1700021.	2.2	49
23	Quantification of SAHA-Dependent Changes in Histone Modifications Using Data-Independent Acquisition Mass Spectrometry. Journal of Proteome Research, 2015, 14, 3252-3262.	3.7	45
24	Isoformâ€resolved correlation analysis between <scp>mRNA</scp> abundance regulation and protein level degradation. Molecular Systems Biology, 2020, 16, e9170.	7.2	42
25	Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition. Molecular and Cellular Proteomics, 2020, 19, 421-430.	3.8	40
26	Classification of mouse B cell types using surfaceome proteotype maps. Nature Communications, 2019, 10, 5734.	12.8	31
27	Data-independent Acquisition Improves Quantitative Cross-linking Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 786-795.	3.8	31
28	Revealing Dynamic Protein Acetylation across Subcellular Compartments. Journal of Proteome Research, 2020, 19, 2404-2418.	3.7	26
29	Systematic Comparison of Strategies for the Enrichment of Lysosomes by Data Independent Acquisition. Journal of Proteome Research, 2020, 19, 371-381.	3.7	25
30	Different syngeneic tumors show distinctive intrinsic tumor-immunity and mechanisms of actions (MOA) of anti-PD-1 treatment. Scientific Reports, 2022, 12, 3278.	3.3	25
31	Biomarker Candidates for Tumors Identified from Deep-Profiled Plasma Stem Predominantly from the Low Abundant Area. Journal of Proteome Research, 2022, 21, 1718-1735.	3.7	21
32	RIP-chip-SRM—a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in <i>C. elegans</i> . Genome Research, 2012, 22, 1360-1371.	5.5	18
33	Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance. Nature Communications, 2022, 13, .	12.8	11
34	MhcVizPipe: A Quality Control Software for Rapid Assessment of Small- to Large-Scale Immunopeptidome Datasets. Molecular and Cellular Proteomics, 2022, 21, 100178.	3.8	9
35	Mechanistic Insights into a CDK9 Inhibitor Via Orthogonal Proteomics Methods. ACS Chemical Biology, 2022, 17, 54-67.	3.4	6