
W Daniel Stamer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3595022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images. Experimental Eye Research, 2022, 214, 108844.	1.2	6
2	The role of microRNAs in glaucoma. Experimental Eye Research, 2022, 215, 108909.	1.2	10
3	Anterior Segment Anatomy and Conventional Outflow Physiology of the Tree Shrew (Tupaia) Tj ETQq1 1 0.78431	l4 rgBT /O	verlock 10 T
4	Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. , 2022, 63, 16.		17
5	Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. , 2022, 63, 12.		20
6	A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone. Frontiers in Cell and Developmental Biology, 2022, 10, 855097.	1.8	4
7	Extracellular Matrix Stiffness and TGFβ2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 844342.	1.8	25
8	A novel glaucoma approach: Stem cell regeneration of the trabecular meshwork. Progress in Retinal and Eye Research, 2022, 90, 101063.	7.3	19
9	Cellular Mechanisms Regulating Conventional Outflow of Aqueous Humor. , 2022, , 2035-2062.		0
10	Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Progress in Retinal and Eye Research, 2022, 91, 101094.	7.3	9
11	Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. International Journal of Molecular Sciences, 2022, 23, 7372.	1.8	3
12	The vital role for nitric oxide in intraocular pressure homeostasis. Progress in Retinal and Eye Research, 2021, 83, 100922.	7.3	48
13	In vivo estimation of murine iris stiffness using finite element modeling. Experimental Eye Research, 2021, 202, 108374.	1.2	7
14	Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow. Journal of Physiology, 2021, 599, 571-592.	1.3	38
15	siRNA targeting Schlemm's canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Molecular Therapy - Methods and Clinical Development, 2021, 20, 86-94.	1.8	10
16	Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis. ELife, 2021, 10, .	2.8	32
17	The ocular pulse decreases aqueous humor outflow resistance by stimulating nitric oxide production. American Journal of Physiology - Cell Physiology, 2021, 320, C652-C665.	2.1	11
18	A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Experimental Eye Research, 2021, 205, 108472.	1.2	34

#	Article	IF	CITATIONS
19	Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model. Translational Vision Science and Technology, 2021, 10, 10.	1.1	8
20	Thrombospondinâ€1 mediates Rhoâ€kinase inhibitorâ€induced increase in outflowâ€facility. Journal of Cellular Physiology, 2021, 236, 8226-8238.	2.0	9
21	Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics, 2021, 13, 901.	2.0	7
22	Surface Engineering of FLT4-Targeted Nanocarriers Enhances Cell-Softening Glaucoma Therapy. ACS Applied Materials & Interfaces, 2021, 13, 32823-32836.	4.0	10
23	Fibrotic Changes to Schlemm's Canal Endothelial Cells in Glaucoma. International Journal of Molecular Sciences, 2021, 22, 9446.	1.8	13
24	Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. International Journal of Molecular Sciences, 2021, 22, 10288.	1.8	6
25	R. Rand Allingham, M.D. (1953–2018). Experimental Eye Research, 2020, 192, 107927.	1.2	0
26	Physiologic Consequences of Caveolin-1 Ablation in Conventional Outflow Endothelia. , 2020, 61, 32.		14
27	Targeted Delivery of Cell Softening Micelles to Schlemm's Canal Endothelial Cells for Treatment of Glaucoma. Small, 2020, 16, e2004205.	5.2	21
28	Integral role for lysyl oxidaseâ€likeâ€1 in conventional outflow tissue function and behavior. FASEB Journal, 2020, 34, 10762-10777.	0.2	20
29	Fasudil Loaded PLGA Microspheres as Potential Intravitreal Depot Formulation for Glaucoma Therapy. Pharmaceutics, 2020, 12, 706.	2.0	21
30	Reduced Oxidative Phosphorylation and Increased Glycolysis in Human Glaucoma Lamina Cribrosa Cells. , 2020, 61, 4.		13
31	An In Vitro Bovine Cellular Model for Human Schlemm's Canal Endothelial Cells and Their Response to TGFβ Treatment. Translational Vision Science and Technology, 2020, 9, 32.	1.1	2
32	Expression of mRNAs, miRNAs, and IncRNAs in Human Trabecular Meshwork Cells Upon Mechanical Stretch. , 2020, 61, 2.		24
33	Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation. Science Advances, 2020, 6, eaay8699.	4.7	18
34	The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice. , 2020, 61, 41.		7
35	Data on differentially expressed proteins in rock inhibitor-treated human trabecular meshwork cells using SWATH-based proteomics. Data in Brief, 2020, 31, 105846.	0.5	1
36	Identification and activity of the functional complex between hnRNPL and the pseudoexfoliation syndrome-associated IncRNA, LOXL1-AS1. Human Molecular Genetics, 2020, 29, 1986-1995.	1.4	8

#	Article	IF	CITATIONS
37	Shear Stress in Schlemm's Canal as a Sensor of Intraocular Pressure. Scientific Reports, 2020, 10, 5804.	1.6	26
38	Matrix Metalloproteinases and Glaucoma Treatment. Journal of Ocular Pharmacology and Therapeutics, 2020, 36, 208-228.	0.6	70
39	Molecular taxonomy of human ocular outflow tissues defined by single-cell transcriptomics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12856-12867.	3.3	77
40	A Small Molecule Inhibitor of VE-PTP Activates Tie2 in Schlemm's Canal Increasing Outflow Facility and Reducing Intraocular Pressure. , 2020, 61, 12.		25
41	Cellular Mechanisms Regulating Conventional Outflow of Aqueous Humor. , 2020, , 1-29.		0
42	Differential DNA methylation patterns in human Schlemm's canal endothelial cells with glaucoma. Molecular Vision, 2020, 26, 483-493.	1.1	2
43	Antiglaucoma EP ₂ Agonists: A Long Road That Led Somewhere. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 469-474.	0.6	10
44	ISOPT Clinical Special Issue. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 423-423.	0.6	0
45	Age-related changes in eye morphology and aqueous humor dynamics in DBA/2J mice using contrast-enhanced ocular MRI. Magnetic Resonance Imaging, 2019, 59, 10-16.	1.0	10
46	Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophysical Journal, 2019, 116, 518-529.	0.2	46
47	A Highly Effective and Ultra-Long-Acting Anti-Glaucoma Drug, with a Novel Periorbital Delivery Method. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 265-277.	0.6	9
48	GPR158 in the Visual System: Homeostatic Role in Regulation of Intraocular Pressure. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 203-215.	0.6	6
49	A model of the oscillatory mechanical forces in the conventional outflow pathway. Journal of the Royal Society Interface, 2019, 16, 20180652.	1.5	34
50	Increased stiffness and flow resistance of the inner wall of Schlemm's canal in glaucomatous human eyes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26555-26563.	3.3	70
51	In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1714-1722.	3.3	66
52	Isolation of Retinal Exosome Biomarkers from Blood byÂTargeted Immunocapture. Advances in Experimental Medicine and Biology, 2019, 1185, 21-25.	0.8	10
53	The relationship between outflow resistance and trabecular meshwork stiffness in mice. Scientific Reports, 2018, 8, 5848.	1.6	57
54	Differentially expressed microRNAs in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Human Molecular Genetics, 2018, 27, 1263-1275.	1.4	71

#	Article	IF	CITATIONS
55	Polarized Exosome Release from the Retinal Pigmented Epithelium. Advances in Experimental Medicine and Biology, 2018, 1074, 539-544.	0.8	23
56	Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Experimental Eye Research, 2018, 171, 164-173.	1.2	221
57	Characterizing differences between MSCs and TM cells: Toward autologous stem cell therapies for the glaucomatous trabecular meshwork. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 695-704.	1.3	20
58	Accessibility to and Quality of Human Eye Tissue for Research: A Cross-Sectional Survey of ARVO Members. , 2018, 59, 4783.		14
59	Intracameral Delivery of Layerâ€by‣ayer Coated siRNA Nanoparticles for Glaucoma Therapy. Small, 2018, 14, e1803239.	5.2	38
60	Differential Expression of Coding and Long Noncoding RNAs in Keratoconus-Affected Corneas. , 2018, 59, 2717.		45
61	Pharmacological regulation of outflow resistance distal to Schlemm's canal. American Journal of Physiology - Cell Physiology, 2018, 315, C44-C51.	2.1	71
62	Trabodenoson, an Adenosine Mimetic With A ₁ Receptor Selectivity Lowers Intraocular Pressure by Increasing Conventional Outflow Facility in Mice. , 2018, 59, 383.		32
63	Enhancement of Outflow Facility in the Murine Eye by Targeting Selected Tight-Junctions of Schlemm's Canal Endothelia. Scientific Reports, 2017, 7, 40717.	1.6	25
64	Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma. Advanced Materials, 2017, 29, 1604932.	11.1	85
65	Roles of exosomes in the normal and diseased eye. Progress in Retinal and Eye Research, 2017, 59, 158-177.	7.3	126
66	Peptideâ€Functionalized Fluorescent Particles for In Situ Detection of Nitric Oxide via Peroxynitriteâ€Mediated Nitration. Advanced Healthcare Materials, 2017, 6, 1700383.	3.9	7
67	A Review of Nitric Oxide for the Treatment of Glaucomatous Disease. Ophthalmology and Therapy, 2017, 6, 221-232.	1.0	72
68	Differential response and withdrawal profile of glucocorticoid-treated human trabecular meshwork cells. Experimental Eye Research, 2017, 155, 38-46.	1.2	10
69	Pentablock copolymer dexamethasone nanoformulations elevate MYOC: in vitro liberation, activity and safety in human trabecular meshwork cells. Nanomedicine, 2017, 12, 1911-1926.	1.7	10
70	Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented Epithelium Monolayers. Scientific Reports, 2017, 7, 4901.	1.6	73
71	Major review: Exfoliation syndrome; advances in disease genetics, molecular biology, and epidemiology. Experimental Eye Research, 2017, 154, 88-103.	1.2	97
72	Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine. Progress in Retinal and Eye Research, 2017, 56, 58-83.	7.3	103

#	Article	IF	CITATIONS
73	The many faces of the trabecular meshwork cell. Experimental Eye Research, 2017, 158, 112-123.	1.2	181
74	Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Human Molecular Genetics, 2017, 26, 1230-1246.	1.4	60
75	VEGF as a Paracrine Regulator of Conventional Outflow Facility. , 2017, 58, 1899.		39
76	The Ability of Nitric Oxide to Lower Intraocular Pressure Is Dependent on Guanylyl Cyclase. , 2017, 58, 4826.		26
77	A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. PLoS ONE, 2017, 12, e0170628.	1.1	452
78	Comment on "ldentification of Novel G Protein–Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinismâ€, , 2017, 58, 4733.		2
79	Stanniocalcin-1 Is an Ocular Hypotensive Agent and a Downstream Effector Molecule That Is Necessary for the Intraocular Pressure–Lowering Effects of Latanoprost. , 2017, 58, 2715.		12
80	Intravitreal Anti-VEGF Injections Reduce Aqueous Outflow Facility in Patients With Neovascular Age-Related Macular Degeneration. , 2017, 58, 1893.		43
81	Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells. , 2017, 58, 492.		7
82	The Soluble Guanylate Cyclase Stimulator IWP-953 Increases Conventional Outflow Facility in Mouse Eyes. , 2016, 57, 1317.		27
83	Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms. , 2016, 57, 6197.		129
84	A Common Variant in <i>MIR182</i> Is Associated With Primary Open-Angle Glaucoma in the NEICHBORHOOD Consortium. , 2016, 57, 4528.		42
85	Life under pressure: The role of ocular cribriform cells in preventing glaucoma. Experimental Eye Research, 2016, 151, 150-159.	1.2	13
86	Dedication of Special Issue on Purinergic Regulation in the Eye to Mortimer M. Civan. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 484-484.	0.6	0
87	Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Scientific Reports, 2016, 6, 37127.	1.6	65
88	The Value of Mouse Models for Glaucoma Drug Discovery. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 486-487.	0.6	10
89	Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes. European Journal of Pharmacology, 2016, 787, 20-31.	1.7	89
90	Eye Care Professionals' Perspectives on Eye Donation and an Eye Donation Registry for Research: A Single-Institution, Cross-Sectional Study. Current Eye Research, 2016, 41, 867-871.	0.7	7

#	Article	IF	CITATIONS
91	Mechanism of Fibronectin Binding to Human Trabecular Meshwork Exosomes and Its Modulation by Dexamethasone. PLoS ONE, 2016, 11, e0165326.	1.1	41
92	Role of nitric oxide in murine conventional outflow physiology. American Journal of Physiology - Cell Physiology, 2015, 309, C205-C214.	2.1	82
93	Expression Profiling of Human Schlemm's Canal Endothelial Cells From Eyes With and Without Glaucoma. , 2015, 56, 6747.		28
94	Aqueous Humor Outflow: Dynamics and Disease. , 2015, 56, 2993.		63
95	Physical Factors Affecting Outflow Facility Measurements in Mice. , 2015, 56, 8331.		33
96	High-throughput screening for modulators of cellular contractile force. Integrative Biology (United) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 50

97	Human aqueous humor exosomes. Experimental Eye Research, 2015, 132, 73-77.	1.2	114
98	Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the <i>LOXL1</i> locus. Human Molecular Genetics, 2015, 24, 6552-6563.	1.4	76
99	Autophagic dysregulation in glaucomatous trabecular meshwork cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 379-385.	1.8	61
100	Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction. Progress in Retinal and Eye Research, 2015, 44, 86-98.	7.3	133
101	Pilocarpine-Induced Dilation of Schlemm's Canal and Prevention of Lumen Collapse at Elevated Intraocular Pressures in Living Mice Visualized by OCT. , 2014, 55, 3737.		74
102	The Structure of the Trabecular Meshwork, Its Connections to the Ciliary Muscle, and the Effect of Pilocarpine on Outflow Facility in Mice. , 2014, 55, 3727.		91
103	Circumferential Tensile Stiffness of Glaucomatous Trabecular Meshwork. , 2014, 55, 814.		45
104	Shear Stress-Triggered Nitric Oxide Release From Schlemm's Canal Cells. Investigative Ophthalmology and Visual Science, 2014, 55, 8067-8076.	3.3	74
105	Altered mechanobiology of Schlemm's canal endothelial cells in glaucoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13876-13881.	3.3	144
106	Controlled exosome release from the retinal pigment epithelium inÂsitu. Experimental Eye Research, 2014, 129, 1-4.	1.2	40
107	Biomechanical strain as a trigger for pore formation in Schlemm's canal endothelial cells. Experimental Eye Research, 2014, 127, 224-235.	1.2	41
	Ultrastructural Changes Associated With Dexamethasone-Induced Ocular Hypertension in Mice 2014.		

#	Article	IF	CITATIONS
109	Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Experimental Eye Research, 2014, 120, 28-35.	1.2	79
110	Disease progression in iridocorneal angle tissues of BMP2-induced ocular hypertensive mice with optical coherence tomography. Molecular Vision, 2014, 20, 1695-709.	1.1	18
111	Unique Response Profile of Trabecular Meshwork Cells to the Novel Selective Glucocorticoid Receptor Agonist, GW870086X. , 2013, 54, 2100.		17
112	Pigment Epithelium-Derived Factor Decreases Outflow Facility. , 2013, 54, 6655.		21
113	Differential Effects of Prostaglandin E ₂ -Sensitive Receptors on Contractility of Human Ocular Cells That Regulate Conventional Outflow. , 2013, 54, 4782.		41
114	A Role for Myocilin in Receptor-Mediated Endocytosis. PLoS ONE, 2013, 8, e82301.	1.1	16
115	Current understanding of conventional outflow dysfunction in glaucoma. Current Opinion in Ophthalmology, 2012, 23, 135-143.	1.3	251
116	Myocilin, a Component of a Membrane-Associated Protein Complex Driven by a Homologous Q-SNARE Domain. Biochemistry, 2012, 51, 3606-3613.	1.2	14
117	The Cell and Molecular Biology of Glaucoma: Mechanisms in the Conventional Outflow Pathway. , 2012, 53, 2470.		33
118	Pharmacologic Manipulation of Conventional Outflow Facility in Ex Vivo Mouse Eyes. , 2012, 53, 5838.		77
119	Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. Journal of Cellular Physiology, 2012, 227, 172-182.	2.0	54
120	A model of giant vacuole dynamics in human Schlemm's canal endothelial cells. Experimental Eye Research, 2011, 92, 57-66.	1.2	41
121	Cytoskeletal Dependence of Adenosine Triphosphate Release by Human Trabecular Meshwork Cells. , 2011, 52, 7996.		30
122	eNOS, a Pressure-Dependent Regulator of Intraocular Pressure. , 2011, 52, 9438.		151
123	Outflow Physiology of the Mouse Eye: Pressure Dependence and Washout. , 2011, 52, 1865.		94
124	The Role of the Prostaglandin EP ₄ Receptor in the Regulation of Human Outflow Facility. , 2011, 52, 3506.		28
125	S1P ₂ receptor regulation of sphingosine-1-phosphate effects on conventional outflow physiology. American Journal of Physiology - Cell Physiology, 2011, 300, C1164-C1171.	2.1	37
126	Structural basement membrane components and corresponding integrins in Schlemm's canal endothelia. Molecular Vision, 2011, 17, 199-209.	1.1	17

#	Article	IF	CITATIONS
127	A New Method for Selection of Angular Aqueous Plexus Cells from Porcine Eyes: A Model for Schlemm's Canal Endothelium. , 2010, 51, 5744.		26
128	Sphingosine-1-Phosphate Enhancement of Cortical Actomyosin Organization in Cultured Human Schlemm's Canal Endothelial Cell Monolayers. , 2010, 51, 6633.		31
129	Cellular Basis for Bimatoprost Effects on Human Conventional Outflow. , 2010, 51, 5176.		36
130	S1P 1 receptor activation is insufficient to mimic S1Pâ€mediated effects on aqueous humor outflow physiology. FASEB Journal, 2010, 24, 593.2.	0.2	0
131	Regulation of Myocilin-Associated Exosome Release from Human Trabecular Meshwork Cells. , 2009, 50, 1313.		50
132	Cyclic Mechanical Stress and Trabecular Meshwork Cell Contractility. , 2009, 50, 3826.		51
133	Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells. BMC Medical Genomics, 2009, 2, 58.	0.7	84
134	The changing paradigm of outflow resistance generation: Towards synergistic models of the JCT and inner wall endothelium. Experimental Eye Research, 2009, 88, 656-670.	1.2	222
135	Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes. Experimental Eye Research, 2009, 89, 980-988.	1.2	49
136	Aquaporin-1 expression and conventional aqueous outflow in human eyes. Experimental Eye Research, 2008, 87, 349-355.	1.2	10
137	Endogenous bioactive lipids and the regulation of conventional outflow facility. Expert Review of Ophthalmology, 2008, 3, 457-470.	0.3	20
138	Schlemm??s Canal Endothelia, Lymphatic, or Blood Vasculature?. Journal of Glaucoma, 2007, 16, 391-405.	0.8	68
139	Targeted gene transfer to Schlemm's canal by retroperfusion. Experimental Eye Research, 2007, 84, 843-849.	1.2	6
140	Bimatoprost, Prostamide Activity, and Conventional Drainage. , 2007, 48, 4107.		80
141	Differential P1-purinergic modulation of human Schlemm's canal inner-wall cells. American Journal of Physiology - Cell Physiology, 2005, 288, C784-C794.	2.1	33
142	Extracellular Trafficking of Myocilin in Human Trabecular Meshwork Cells. Journal of Biological Chemistry, 2005, 280, 28917-28926.	1.6	89
143	Aquaporin-1 Channels in Human Retinal Pigment Epithelium: Role in Transepithelial Water Movement. , 2003, 44, 2803.		129
144	Human Schlemm's canal cells express the endothelial adherens proteins, VE-cadherin and PECAM-1. Current Eye Research, 2002, 25, 299-308.	0.7	54

#	Article	IF	CITATIONS
145	Isolation of primary open-angle glaucomatous trabecular meshwork cells from whole eye tissue. Current Eye Research, 2000, 20, 347-350.	0.7	40
146	Isolation and culture of human trabecular meshwork cells by extracellular matrix digestion. Current Eye Research, 1995, 14, 611-617.	0.7	174
147	Cultured human trabecular mesh work cells express aquaporin-1 water channels. Current Eye Research, 1995, 14, 1095-1100.	0.7	63